000908554 001__ 908554
000908554 005__ 20230123110631.0
000908554 0247_ $$2doi$$a10.1103/PhysRevMaterials.6.074004
000908554 0247_ $$2ISSN$$a2475-9953
000908554 0247_ $$2ISSN$$a2476-0455
000908554 0247_ $$2Handle$$a2128/31458
000908554 0247_ $$2WOS$$aWOS:000835726200002
000908554 037__ $$aFZJ-2022-02678
000908554 082__ $$a530
000908554 1001_ $$0P:(DE-Juel1)186814$$aZeer, Mahmoud$$b0$$eCorresponding author
000908554 245__ $$aSpin and orbital transport in rare-earth dichalcogenides: The case of EuS 2
000908554 260__ $$aCollege Park, MD$$bAPS$$c2022
000908554 3367_ $$2DRIVER$$aarticle
000908554 3367_ $$2DataCite$$aOutput Types/Journal article
000908554 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1657280536_27127
000908554 3367_ $$2BibTeX$$aARTICLE
000908554 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908554 3367_ $$00$$2EndNote$$aJournal Article
000908554 520__ $$aWe perform first-principles calculations to determine the electronic, magnetic, and transport properties of rare-earth dichalcogenides, taking a monolayer of H-phase EuS2 as a representative. We predict that the H phase of the EuS2 monolayer exhibits a half-metallic behavior upon doping with a very high magnetic moment. We find that the electronic structure of EuS2 is very sensitive to the value of Coulomb repulsion U, which effectively controls the degree of hybridization between Eu f and S p states. We further predict that the nontrivial electronic structure of EuS2 directly results in a pronounced anomalous Hall effect with nontrivial band topology. Moreover, while we find that the spin Hall effect closely follows the anomalous Hall effect in the system, the orbital complexity of the system results in a very large orbital Hall effect, whose properties depend very sensitively on the strength of correlations. Our findings thus promote rare-earth-based dichalcogenides as a promising platform for topological spintronics and orbitronics.
000908554 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000908554 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908554 7001_ $$0P:(DE-Juel1)178993$$aGo, Dongwook$$b1$$eCorresponding author
000908554 7001_ $$0P:(DE-Juel1)179002$$aCarbone, Johanna P.$$b2
000908554 7001_ $$0P:(DE-Juel1)186680$$aSaunderson, Tom G.$$b3$$ufzj
000908554 7001_ $$0P:(DE-Juel1)172666$$aRedies, Matthias$$b4
000908554 7001_ $$0P:(DE-HGF)0$$aKläui, Mathias$$b5
000908554 7001_ $$0P:(DE-HGF)0$$aGhabboun, Jamal$$b6
000908554 7001_ $$0P:(DE-HGF)0$$aWulfhekel, Wulf$$b7
000908554 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b8
000908554 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Yuriy$$b9$$eCorresponding author
000908554 773__ $$0PERI:(DE-600)2898355-5$$a10.1103/PhysRevMaterials.6.074004$$gVol. 6, no. 7, p. 074004$$n7$$p074004$$tPhysical review materials$$v6$$x2475-9953$$y2022
000908554 8564_ $$uhttps://juser.fz-juelich.de/record/908554/files/PhysRevMaterials.6.074004.pdf$$yOpenAccess
000908554 909CO $$ooai:juser.fz-juelich.de:908554$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000908554 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186814$$aForschungszentrum Jülich$$b0$$kFZJ
000908554 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178993$$aForschungszentrum Jülich$$b1$$kFZJ
000908554 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179002$$aForschungszentrum Jülich$$b2$$kFZJ
000908554 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186680$$aForschungszentrum Jülich$$b3$$kFZJ
000908554 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b8$$kFZJ
000908554 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich$$b9$$kFZJ
000908554 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000908554 9141_ $$y2022
000908554 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000908554 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000908554 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908554 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000908554 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV MATER : 2021$$d2022-11-25
000908554 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-25
000908554 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-25
000908554 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-25
000908554 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-25
000908554 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-25
000908554 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-25
000908554 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000908554 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000908554 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000908554 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000908554 980__ $$ajournal
000908554 980__ $$aVDB
000908554 980__ $$aUNRESTRICTED
000908554 980__ $$aI:(DE-Juel1)IAS-1-20090406
000908554 980__ $$aI:(DE-Juel1)PGI-1-20110106
000908554 980__ $$aI:(DE-82)080009_20140620
000908554 980__ $$aI:(DE-82)080012_20140620
000908554 9801_ $$aFullTexts