001     908554
005     20230123110631.0
024 7 _ |a 10.1103/PhysRevMaterials.6.074004
|2 doi
024 7 _ |a 2475-9953
|2 ISSN
024 7 _ |a 2476-0455
|2 ISSN
024 7 _ |a 2128/31458
|2 Handle
024 7 _ |a WOS:000835726200002
|2 WOS
037 _ _ |a FZJ-2022-02678
082 _ _ |a 530
100 1 _ |a Zeer, Mahmoud
|0 P:(DE-Juel1)186814
|b 0
|e Corresponding author
245 _ _ |a Spin and orbital transport in rare-earth dichalcogenides: The case of EuS 2
260 _ _ |a College Park, MD
|c 2022
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1657280536_27127
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We perform first-principles calculations to determine the electronic, magnetic, and transport properties of rare-earth dichalcogenides, taking a monolayer of H-phase EuS2 as a representative. We predict that the H phase of the EuS2 monolayer exhibits a half-metallic behavior upon doping with a very high magnetic moment. We find that the electronic structure of EuS2 is very sensitive to the value of Coulomb repulsion U, which effectively controls the degree of hybridization between Eu f and S p states. We further predict that the nontrivial electronic structure of EuS2 directly results in a pronounced anomalous Hall effect with nontrivial band topology. Moreover, while we find that the spin Hall effect closely follows the anomalous Hall effect in the system, the orbital complexity of the system results in a very large orbital Hall effect, whose properties depend very sensitively on the strength of correlations. Our findings thus promote rare-earth-based dichalcogenides as a promising platform for topological spintronics and orbitronics.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Go, Dongwook
|0 P:(DE-Juel1)178993
|b 1
|e Corresponding author
700 1 _ |a Carbone, Johanna P.
|0 P:(DE-Juel1)179002
|b 2
700 1 _ |a Saunderson, Tom G.
|0 P:(DE-Juel1)186680
|b 3
|u fzj
700 1 _ |a Redies, Matthias
|0 P:(DE-Juel1)172666
|b 4
700 1 _ |a Kläui, Mathias
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Ghabboun, Jamal
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Wulfhekel, Wulf
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 8
700 1 _ |a Mokrousov, Yuriy
|0 P:(DE-Juel1)130848
|b 9
|e Corresponding author
773 _ _ |a 10.1103/PhysRevMaterials.6.074004
|g Vol. 6, no. 7, p. 074004
|0 PERI:(DE-600)2898355-5
|n 7
|p 074004
|t Physical review materials
|v 6
|y 2022
|x 2475-9953
856 4 _ |u https://juser.fz-juelich.de/record/908554/files/PhysRevMaterials.6.074004.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:908554
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)186814
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)178993
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)179002
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)186680
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)130848
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2022
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV MATER : 2021
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-25
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-25
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21