000908560 001__ 908560
000908560 005__ 20240712100902.0
000908560 0247_ $$2doi$$a10.5194/acp-22-1059-2022
000908560 0247_ $$2ISSN$$a1680-7316
000908560 0247_ $$2ISSN$$a1680-7324
000908560 0247_ $$2Handle$$a2128/31507
000908560 0247_ $$2altmetric$$aaltmetric:121364138
000908560 0247_ $$2WOS$$aWOS:000747698400001
000908560 037__ $$aFZJ-2022-02684
000908560 082__ $$a550
000908560 1001_ $$0P:(DE-Juel1)173706$$aKhordakova, Dina$$b0$$ufzj
000908560 245__ $$aA case study on the impact of severe convective storms on the water vapor mixing ratio in the lower mid-latitude stratosphere observed in 2019 over Europe
000908560 260__ $$aKatlenburg-Lindau$$bEGU$$c2022
000908560 3367_ $$2DRIVER$$aarticle
000908560 3367_ $$2DataCite$$aOutput Types/Journal article
000908560 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1669719853_21286
000908560 3367_ $$2BibTeX$$aARTICLE
000908560 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908560 3367_ $$00$$2EndNote$$aJournal Article
000908560 520__ $$aExtreme convective events in the troposphere not only have immediate impacts on the surface, but they can also influence the dynamics and composition of the lower stratosphere (LS). One major impact is the moistening of the LS by overshooting convection. This effect plays a crucial role in climate feedback, as small changes of water vapor in the upper troposphere and lower stratosphere (UTLS) have a large impact on the radiative budget of the atmosphere. In this case study, we investigate water vapor injections into the LS by two consecutive convective events in the European mid-latitudes within the framework of the MOSES (Modular Observation Solutions for Earth Systems) measurement campaign during the early summer of 2019. Using balloon-borne instruments, measurements of convective water vapor injection into the stratosphere were performed. Such measurements with a high vertical resolution are rare. The magnitude of the stratospheric water vapor reached up to 12.1 ppmv (parts per million by volume), with an estimated background value of 5 ppmv. Hence, the water vapor enhancement reported here is of the same order of magnitude as earlier reports of water vapor injection by convective overshooting over North America. However, the overshooting took place in the extratropical stratosphere over Europe and has a stronger impact on long-term water vapor mixing ratios in the stratosphere compared to the monsoon-influenced region in North America. At the altitude of the measured injection, a sharp drop in a local ozone enhancement peak makes the observed composition of air very unique with high ozone up to 650 ppbv (parts per billion by volume) and high water vapor up to 12.1 ppmv. ERA-Interim does not show any signal of the convective overshoot, the water vapor values measured by the Microwave Limb Sounder (MLS) in the LS are lower than the in situ observations, and the ERA5 overestimated water vapor mixing ratios. Backward trajectories of the measured injected air masses reveal that the moistening of the LS took place several hours before the balloon launch. This is in good agreement with the reanalyses, which shows a strong change in the structure of isotherms and a sudden and short-lived increase in potential vorticity at the altitude and location of the trajectory. Similarly, satellite data show low cloud-top brightness temperatures during the overshooting event, which indicates an elevated cloud top height.
000908560 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000908560 536__ $$0G:(DE-HGF)POF4-2B1$$a2B1 - MOSES  (CTA - CCA) (POF4-2B1)$$cPOF4-2B1$$fPOF IV$$x1
000908560 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908560 7001_ $$0P:(DE-Juel1)139013$$aRolf, Christian$$b1$$eCorresponding author
000908560 7001_ $$0P:(DE-Juel1)129122$$aGrooß, Jens-Uwe$$b2
000908560 7001_ $$0P:(DE-Juel1)129138$$aMüller, Rolf$$b3
000908560 7001_ $$0P:(DE-Juel1)129130$$aKonopka, Paul$$b4$$ufzj
000908560 7001_ $$0P:(DE-HGF)0$$aWieser, Andreas$$b5
000908560 7001_ $$0P:(DE-Juel1)129131$$aKrämer, Martina$$b6
000908560 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b7
000908560 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-22-1059-2022$$gVol. 22, no. 2, p. 1059 - 1079$$n2$$p1059 - 1079$$tAtmospheric chemistry and physics$$v22$$x1680-7316$$y2022
000908560 8564_ $$uhttps://juser.fz-juelich.de/record/908560/files/acp-22-1059-2022.pdf$$yOpenAccess
000908560 909CO $$ooai:juser.fz-juelich.de:908560$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000908560 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173706$$aForschungszentrum Jülich$$b0$$kFZJ
000908560 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)139013$$aForschungszentrum Jülich$$b1$$kFZJ
000908560 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129122$$aForschungszentrum Jülich$$b2$$kFZJ
000908560 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129138$$aForschungszentrum Jülich$$b3$$kFZJ
000908560 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129130$$aForschungszentrum Jülich$$b4$$kFZJ
000908560 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129131$$aForschungszentrum Jülich$$b6$$kFZJ
000908560 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich$$b7$$kFZJ
000908560 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000908560 9131_ $$0G:(DE-HGF)POF4-2B1$$1G:(DE-HGF)POF4-2B0$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lCROSS-TOPIC ACTIVITIES (CTAs)$$vMOSES  (CTA - CCA)$$x1
000908560 9141_ $$y2022
000908560 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000908560 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000908560 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000908560 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000908560 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908560 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000908560 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-19
000908560 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-19
000908560 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2019-12-18T05:37:09Z
000908560 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2019-12-18T05:37:09Z
000908560 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2019-12-18T05:37:09Z
000908560 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-19
000908560 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-19
000908560 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-19
000908560 920__ $$lyes
000908560 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000908560 9801_ $$aFullTexts
000908560 980__ $$ajournal
000908560 980__ $$aVDB
000908560 980__ $$aI:(DE-Juel1)IEK-7-20101013
000908560 980__ $$aUNRESTRICTED
000908560 981__ $$aI:(DE-Juel1)ICE-4-20101013