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Introduction

Healthy aging is associated with altered executive functioning (EF)

Age-related differences in EF abilities are related to changes in resting-state
functional connectivity (RSFC) within brain networks associated with EF [1]
However, it remains unclear which role RSFC within EF-associated networks plays as a
marker for individual EF performance

Here, we examined to what degree individual EF abilities can be predicted from RSFC
In i) an EF-associated network, ii) a perceptuomotor network, iii) the whole-brain
connectome, and iv) random networks in young and old adults

Research Questions:

a) Do young and old adults differ in the predictability of their EF abilities depending
on network or task demand level?

b) Does an EF-related network outperform EF-unrelated networks?

c) Does this pattern change with demand level?

Methods

We meta-analytically defined an EF-related network (EFN) [2] and a perceptuomotor
network (PercMot) [3] linked to visual, auditory, and motor processing

As a whole-brain control we used Power et al.'s [4] graph of functional areas

Further, we created 10 random networks (RandomAvg) of 50 nodes preserving the
spatial properties of the EFN [5]

Resting-state fMRI and behavioral data of 116 younger (age = 20-40 years, 64 females)
and 111 older (age = 60-80 years, 72 females) healthy adults were obtained from the
enhanced NKI sample [0]

Target variables comprised performance in cognitively highly demanding (HD) and less
demanding (LD) conditions of each of 3 classic EF tasks: Color—Word Interference, Tralil
Making, and N-Back

Individual z-transformed performance scores were then predicted from each network's
RSFC using partial least squares with 100 repetitions of a 10-fold cross-validation
scheme

Differences in predictions were further investigated using mixed-measures ANOVA

Results

Meta-analytically defined EF-related Meta-analytically defined

Whole brain represented by Power et al.’s Example random network

network perceptuomotor-related network (2011) graph of cortical functional areas
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Discussion

A comprehensive, robustly defined EFN is not better at predicting EF abilities than are EF-unrelated networks
* Brain regions crucial but not specific to EF — e.g., modulating between-network communication — might be missing from the meta-

analytically derived network
 Brain—behavior associations increase with advancing age [/]
1) greater behavioral variance in older adults?
i) global properties like overall-atrophy?

i) less brain variability in older adults? Younger brains might exploit possible functional architectures more efficiently [8]
« Task x age interaction: age-related decline in within-network specificity or segregation between networks [9]
* Within-network connectivity might be more important in LD tasks — between-network connectivity more so in HD tasks [10]

Conclusions:

» Lack of specificity of neurobiologically plausible
networks for predicting EF abilities

 Global properties of the brain or between-network
communication might contain more information
about inter-individual differences in EF abilities

* Replication with different modalities (e.g., grey
matter volume) and states (e.g., task) necessary
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