

Network Specificity and Age Differences in Predicting **Executive Functioning from Brain Connectivity**

Marisa K. Heckner^{1,2,*}, Edna C. Cieslik^{1,2}, Felix Hoffstaedter^{1,2}, Martin Gell^{1,3}, Simon B.

Eickhoff^{1,2}, Kaustubh R. Patil^{1,2}, & Robert Langner^{1,2}

*m.heckner@fz-juelich.de

Introduction

- Healthy aging is associated with altered executive functioning (EF)
- Age-related differences in EF abilities are related to changes in resting-state functional connectivity (RSFC) within brain networks associated with EF [1]
- However, it remains unclear which role RSFC within EF-associated networks plays as a marker for individual EF performance
- Here, we examined to what degree individual EF abilities can be predicted from RSFC in i) an EF-associated network, ii) a perceptuomotor network, iii) the whole-brain connectome, and iv) random networks in young and old adults

Research Questions:

- a) Do young and old adults differ in the predictability of their EF abilities depending on network or task demand level?
- b) Does an EF-related network outperform EF-unrelated networks?
- c) Does this pattern change with demand level?

Methods

- We meta-analytically defined an **EF-related network** (EFN) [2] and a **perceptuomotor** network (PercMot) [3] linked to visual, auditory, and motor processing
- As a whole-brain control we used Power et al.'s [4] graph of functional areas
- Further, we created 10 random networks (RandomAvg) of 50 nodes preserving the spatial properties of the EFN [5]
- Resting-state fMRI and behavioral data of **116 younger** (age = 20-40 years, 64 females) and 111 older (age = 60-80 years, 72 females) healthy adults were obtained from the enhanced NKI sample [6]
- Target variables comprised performance in cognitively highly demanding (HD) and less demanding (LD) conditions of each of 3 classic EF tasks: Color-Word Interference, Trail Making, and N-Back
- Individual z-transformed performance scores were then predicted from each network's RSFC using partial least squares with 100 repetitions of a 10-fold cross-validation scheme
- Differences in predictions were further investigated using mixed-measures ANOVA

Results

Meta-analytically defined EF-related network

Meta-analytically defined

Whole brain represented by Power et al.'s

Example random network

Age

Old

Young

ANOVA Interaction Effects

Network × **Age** 0.90 -0.85 -RMS 0.80 0.75 -RandomAvg PercMot Power Network

Discussion

- A comprehensive, robustly defined **EFN** is not better at predicting **EF** abilities than are EF-unrelated networks
- Brain regions crucial but not specific to EF e.g., modulating between-network communication might be missing from the metaanalytically derived network
- Brain-behavior associations increase with advancing age [7]
 - i) greater behavioral variance in older adults?
 - ii) global properties like overall-atrophy?
 - iii) less brain variability in older adults? Younger brains might exploit possible functional architectures more efficiently [8]
- Task × age interaction: age-related decline in within-network specificity or segregation between networks [9]
- Within-network connectivity might be more important in LD tasks between-network connectivity more so in HD tasks [10]

Conclusions:

- Lack of specificity of neurobiologically plausible networks for predicting EF abilities
- Global properties of the brain or between-network communication might contain more information about inter-individual differences in EF abilities
- Replication with different modalities (e.g., grey matter volume) and states (e.g., task) necessary

References: [1] Langner, R. (2015), 'Aging and response conflict solution: behavioural and functional connectivity changes'; Steffener, J., et al. (2019), 'Common and distinct neural correlates of dual-tasking and task-switching: a meta-analytic review and a neuro-cognitive processing model of human multitasking'; Langner, R., et al. (2018), 'Towards a human self-regulation system: Common and distinct neural signatures of emotional and behavioural control'; Rottschy, C., et al. (2021), 'Delineating visual, auditory and motor regions in the human brain with functional neuroimaging: A BrainMap-based metaanalytic synthesis'. [4] Power, J.D., et al. (2011). 'Functional network organization of the human brain'. [5] https://github.com/MartinGell/random_nets [6] Nooner, K., et al. (2012), 'Age differences in predicting working memory performance from network-based functional connectivity'; Lockhart, S.N., et al. (2014), 'Structural Imaging Measures of Brain Aging'. [8] McIntosh, A., et al. (2017), 'Resting-State Network Topology Differentiates Task Signals across the Adult Life Span'; Varangis, E., et al., (2019), 'The Affect of Aging on Resting State Connectivity of Predefined Networks in the Brain'. [10] Cohen, J.R., & D'Esposito, M. (2017), 'Brain Modularity Mediates the Relation between Task Complexity and Performance'