000908570 001__ 908570
000908570 005__ 20220708190359.0
000908570 0247_ $$2doi$$a10.1093/neuonc/nox168.607
000908570 0247_ $$2ISSN$$a1522-8517
000908570 0247_ $$2ISSN$$a1523-5866
000908570 037__ $$aFZJ-2022-02694
000908570 082__ $$a610
000908570 1001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b0$$ufzj
000908570 1112_ $$aJoint Conference of 22nd Annual Scientific Meeting and Education Day of the Society-for-Neuro-Oncology / Conference of the Society-for-CNS-Interstitial-Delivery-of-the-Therapeutics (SCIDOT) on Therapeutic Delivery to the CNS$$cSan Francisco$$d2017-11-16 - 2017-11-19$$wUSA
000908570 245__ $$aNMNIMG-32. DIFFERENTIATION OF PSEUDOPROGRESSION FROM TUMOR PROGRESSION IN GLIOBLASTOMA PATIENTS BASED ON FET PET RADIOMICS
000908570 260__ $$c2017
000908570 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1657289142_31954
000908570 3367_ $$033$$2EndNote$$aConference Paper
000908570 3367_ $$2BibTeX$$aINPROCEEDINGS
000908570 3367_ $$2DRIVER$$aconferenceObject
000908570 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000908570 3367_ $$2ORCID$$aOTHER
000908570 520__ $$aAbstractBACKGROUNDDifferentiation of pseudoprogression (PsP) from tumor progression (TP) in glioblastoma patients can be difficult with standard MRI. Textural feature analysis as part of the concept of radiomics offers a quantitative method to describe tumor heterogeneity. We investigated the potential of textural features of O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET to discriminate between PsP and TP in glioblastoma patients.METHODSTwenty-six newly diagnosed glioblastoma patients with MRI findings suspicious for TP within 12 weeks after completion of chemoradiation with temozolomide underwent an additional dynamic FET PET scan. Volumes-of-interest were defined on summed images (20-40 min post-injection) by a 3-dimensional auto-contouring process using a tumor-to-brain ratio (TBR) of 1.6 or more. TBRs and time-activity curves (TACs) of FET uptake were determined. Dynamic FET PET parameters time-to-peak (TTP) and slope (slope of the linear regression line 20-50 min post-injection) were evaluated. Additionally, 39 textural parameters were calculated using the software LifeX. The diagnostic accuracy of TBRs, TTP, slope, and textural parameters to discriminate between PsP and TP was evaluated using ROC analyses using the results of histopathology or of the clinico-radiological course as reference. In order to further increase the diagnostic accuracy, parameters were combined using linear logistic regression for classification of PsP and TP.RESULTSFifteen patients had TP and 11 patients had PsP. The parameters TBRmean, TBRmax and TTP yielded a diagnostic accuracy to discriminate between PsP and TP of 70%, 74%, 59%, respectively. The dynamic FET PET parameter slope yielded the highest diagnostic accuracy of 81%. The two best textural features showed an accuracy of 74%. Combining TBR with textural features lead to an improved accuracy of 78%.CONCLUSIONSTextural features might yield additional valuable information for this highly relevant clinical problem without the need for acquiring a more time-consuming dynamic PET acquisition and should be further evaluated prospectively in larger cohorts.
000908570 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000908570 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908570 7001_ $$0P:(DE-Juel1)164254$$aLerche, Christoph$$b1$$ufzj
000908570 7001_ $$0P:(DE-HGF)0$$aBauer, Elena$$b2
000908570 7001_ $$0P:(DE-HGF)0$$aSteger, Jan$$b3
000908570 7001_ $$0P:(DE-Juel1)131627$$aStoffels, Gabriele$$b4$$ufzj
000908570 7001_ $$0P:(DE-HGF)0$$aBlau, Tobias$$b5
000908570 7001_ $$0P:(DE-Juel1)156211$$aDunkl, Veronika$$b6
000908570 7001_ $$0P:(DE-Juel1)141877$$aFilss, Christian P$$b7$$ufzj
000908570 7001_ $$0P:(DE-Juel1)156479$$aStegmayr, Carina$$b8$$ufzj
000908570 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b9$$ufzj
000908570 7001_ $$0P:(DE-Juel1)131794$$aShah, Nadim J$$b10$$ufzj
000908570 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon$$b11$$ufzj
000908570 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b12$$ufzj
000908570 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b13$$ufzj
000908570 773__ $$0PERI:(DE-600)2094060-9$$a10.1093/neuonc/nox168.607$$gVol. 19, no. suppl_6, p. vi148 - vi149$$x1523-5866$$y2017
000908570 909CO $$ooai:juser.fz-juelich.de:908570$$pVDB
000908570 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b0$$kFZJ
000908570 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164254$$aForschungszentrum Jülich$$b1$$kFZJ
000908570 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131627$$aForschungszentrum Jülich$$b4$$kFZJ
000908570 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141877$$aForschungszentrum Jülich$$b7$$kFZJ
000908570 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156479$$aForschungszentrum Jülich$$b8$$kFZJ
000908570 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b9$$kFZJ
000908570 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b10$$kFZJ
000908570 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b11$$kFZJ
000908570 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b12$$kFZJ
000908570 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b13$$kFZJ
000908570 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000908570 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-03$$wger
000908570 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000908570 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000908570 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-02-03
000908570 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000908570 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000908570 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2021-02-03
000908570 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000908570 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000908570 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEURO-ONCOLOGY : 2019$$d2021-02-03
000908570 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNEURO-ONCOLOGY : 2019$$d2021-02-03
000908570 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000908570 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000908570 9201_ $$0I:(DE-Juel1)VDB1046$$kJARA-BRAIN$$lJülich-Aachen Research Alliance - Translational Brain Medicine$$x2
000908570 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x3
000908570 980__ $$aabstract
000908570 980__ $$aVDB
000908570 980__ $$aI:(DE-Juel1)INM-4-20090406
000908570 980__ $$aI:(DE-Juel1)INM-11-20170113
000908570 980__ $$aI:(DE-Juel1)VDB1046
000908570 980__ $$aI:(DE-Juel1)INM-3-20090406
000908570 980__ $$aUNRESTRICTED