001     908572
005     20240708133739.0
024 7 _ |a 10.1093/neuonc/noz126.264
|2 doi
024 7 _ |a 1522-8517
|2 ISSN
024 7 _ |a 1523-5866
|2 ISSN
024 7 _ |a WOS:000493085900266
|2 WOS
037 _ _ |a FZJ-2022-02696
082 _ _ |a 610
100 1 _ |a Bauer, E. K.
|0 P:(DE-Juel1)159312
|b 0
|u fzj
111 2 _ |a 14th Meeting of the European Association of Neuro-Oncology
|c Lyon
|d 2019-09-19 - 2019-09-22
|w France
245 _ _ |a P14.29 Prediction of overall survival in patients with malignant glioma using dynamic O-(2-[18F]-fluoroethyl)-L-tyrosine PET
260 _ _ |c 2019
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1657289123_28844
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a AbstractBACKGROUNDCharacterization of gliomas according to the revised World Health Organization (WHO) classification of 2016 has gained major importance regarding prognostication. The present study aimed at exploring the prognostic value of dynamic O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) PET in newly diagnosed and molecularly defined astrocytic high-grade glioma (HGG) of the WHO grades III or IV.MATERIAL AND METHODSBefore initiation of treatment, dynamic FET PET imaging was performed in patients with newly diagnosed glioblastoma (GBM) and anaplastic astrocytoma (AA). Static FET PET parameters such as maximum and mean tumor/brain ratios (TBRmax/mean), as well as the dynamic FET PET parameters time-to-peak (TTP) and slope, were obtained. The predictive ability of FET PET parameters was evaluated with regard to the overall survival (OS). Using ROC analyses, threshold values for FET PET parameters were obtained. Subsequently, univariate Kaplan-Meier and multivariate Cox regression survival analyses were performed to assess their predictive power for OS.RESULTSSixty patients (45 GBM, 15 AA) of two university centers were retrospectively identified. Patients with a methylated MGMT promoter as well as with an IDH mutation had a significantly longer OS (both P<0.001). Furthermore, ROC analysis revealed in IDH-wildtype HGG (n=45) that a TTP>25 minutes (AUC, 0.90; sensitivity, 90%; specificity, 87%; P<0.001) was highly prognostic for a longer OS (29 vs. 12 months; P<0.001). Besides a complete resection and a methylated MGMT promoter, TTP remained significant in the multivariate survival analysis (P=0.002, P=0.016, and P=0.003, respectively), indicating an independent predictor for OS. In contrast, both TBRmax and TBRmean were not prognostic (AUC, 0.37 and 0.32, respectively).CONCLUSIONData suggest that within the subgroup of patients with newly diagnosed and untreated IDH-wildtype GBM and AA, dynamic FET PET additionally allows the identification of patients with an improved OS.
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Stoffels, G.
|0 P:(DE-Juel1)131627
|b 1
|u fzj
700 1 _ |a Blau, T.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Reifenberger, G.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Werner, J. M.
|b 4
700 1 _ |a Lohmann, P.
|0 P:(DE-Juel1)145110
|b 5
|u fzj
700 1 _ |a Rapp, M.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Fink, G. R.
|0 P:(DE-Juel1)131720
|b 7
|u fzj
700 1 _ |a Langen, K.
|0 P:(DE-Juel1)131777
|b 8
|u fzj
700 1 _ |a Galldiks, N.
|0 P:(DE-Juel1)143792
|b 9
|u fzj
773 _ _ |a 10.1093/neuonc/noz126.264
|0 PERI:(DE-600)2094060-9
|y 2019
|g Vol. 21, no. Supplement_3, p. iii73 - iii73
|x 1523-5866
909 C O |o oai:juser.fz-juelich.de:908572
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)159312
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131627
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)145110
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131777
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)143792
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 0
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-03
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEURO-ONCOLOGY : 2019
|d 2021-02-03
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NEURO-ONCOLOGY : 2019
|d 2021-02-03
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 1
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 2
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21