000908576 001__ 908576
000908576 005__ 20220721190604.0
000908576 0247_ $$2Handle$$a2128/31497
000908576 037__ $$aFZJ-2022-02700
000908576 041__ $$aEnglish
000908576 1001_ $$0P:(DE-HGF)0$$aSchüßler, Martina Claudia Beate$$b0$$eCorresponding author
000908576 245__ $$aOn the Formation Mechanism of Amorphous Carbonates: Precursors in Nonclassical Crystallization and for Functional Metal Oxides$$f - 2022-02-28
000908576 260__ $$aErlangen$$c2022
000908576 300__ $$a188 p.
000908576 3367_ $$2DataCite$$aOutput Types/Dissertation
000908576 3367_ $$2ORCID$$aDISSERTATION
000908576 3367_ $$2BibTeX$$aPHDTHESIS
000908576 3367_ $$02$$2EndNote$$aThesis
000908576 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1658400053_22925
000908576 3367_ $$2DRIVER$$adoctoralThesis
000908576 502__ $$aDissertation, Erlangen, 2022$$bDissertation$$cErlangen$$d2022$$o2022-02-28
000908576 520__ $$aThis work is dedicated to the highly discussed formation mechanism of amorphous calcium carbonate (ACC), its role in nonclassical crystallization, and amorphous carbonates as a precursor for functional metal oxides.  Decrypting the formation mechanism of ACC provides a new environmentally benign synthesis pathway for complex hierarchically structured nanomaterials. Therefore, different ACC synthesis pathways and the corresponding ACC is studied: ACC synthesis via carbonate released by hydrolysis, manual rapid mixing of calcium chloride and sodium carbonate, and controlled turbulent mixing in a stopped-flow device. Particularly three-dimensional nanonetworks of ACC are received, applying the stopped-flow synthesis approach, which indicates a formation mechanism via liquid-liquid phase separation and spinodal decomposition. Moreover, the existence of a liquid-condensed phase in the formation mechanism is emphasized by the break-down of the nanonetwork to energetically favored droplets over time and a pH-dependent hydration rate of ACC. The extraordinary synthesis pathway via liquid-liquid phase separation is further transferred to other alkaline earth and transition metal carbonates. Thereby, three-dimensional highly hydrated amorphous carbonates or hydroxycarbonates, depending on the relevant solubility products, are accessible, demonstrating the potential and applicability of the mechanism studied herein. The cation hydration enthalpy and radius are suggested to limit the ability of liquid phase formation. Amorphous zinc carbonate hydroxide reveals a peculiar pH dependency, regarding its morphology, composition, and hydration. Moreover, it serves as a tuneable precursor for zinc oxide formation. Besides nanostructured zinc oxide offering a high surface area, copper oxide is synthesized via a stable amorphous copper carbonate hydroxide precursor, georgeite. In contrast to the highly structured porous nanonetworks, smooth georgeite thin films are formed by assembly of the liquid-condensed phase at the air-water interface, utilizing the stabilizing effect of the additive polyacrylic acid (PAA) on georgeite. The obtained high surface area is particularly suited for catalytical applications, cobalt oxide, which was synthesized via an amorphous cobalt carbonate hydroxide precursor, shows promising properties as an electrode material in water-splitting. Further, the synthesis approach via a liquid-condensed phase is utilized for coatings. The results clearly demonstrate that liquid- condensed phases are a powerful concept towards new synthesis approaches for functional metal oxides.
000908576 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
000908576 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
000908576 65017 $$0V:(DE-MLZ)GC-1601-2016$$2V:(DE-HGF)$$aEngineering, Industrial Materials and Processing$$x0
000908576 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0
000908576 693__ $$0EXP:(DE-MLZ)KWS3-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS3-20140101$$6EXP:(DE-MLZ)NL3auS-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-3: Very small angle scattering diffractometer with focusing mirror$$fNL3auS$$x1
000908576 8564_ $$uhttps://opus4.kobv.de/opus4-fau/files/13881/DissertationMartinaSchuessler.pdf
000908576 8564_ $$uhttps://juser.fz-juelich.de/record/908576/files/DissertationMartinaSchuessler.pdf$$yOpenAccess
000908576 909CO $$ooai:juser.fz-juelich.de:908576$$popenaire$$popen_access$$pdriver$$pVDB:MLZ$$pVDB$$pdnbdelivery
000908576 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
000908576 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
000908576 9141_ $$y2022
000908576 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908576 920__ $$lyes
000908576 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000908576 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x1
000908576 980__ $$aphd
000908576 980__ $$aVDB
000908576 980__ $$aUNRESTRICTED
000908576 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000908576 980__ $$aI:(DE-588b)4597118-3
000908576 9801_ $$aFullTexts