000908591 001__ 908591
000908591 005__ 20230228121600.0
000908591 0247_ $$2doi$$a10.1016/j.triboint.2022.107660
000908591 0247_ $$2ISSN$$a0301-679X
000908591 0247_ $$2ISSN$$a1879-2464
000908591 0247_ $$2Handle$$a2128/33789
000908591 0247_ $$2WOS$$aWOS:000808336700004
000908591 037__ $$aFZJ-2022-02707
000908591 082__ $$a660
000908591 1001_ $$0P:(DE-HGF)0$$aHu, Jianqiao$$b0
000908591 245__ $$aBreakdown of Archard law due to transition of wear mechanism from plasticity to fracture
000908591 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2022
000908591 3367_ $$2DRIVER$$aarticle
000908591 3367_ $$2DataCite$$aOutput Types/Journal article
000908591 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1674743887_19833
000908591 3367_ $$2BibTeX$$aARTICLE
000908591 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908591 3367_ $$00$$2EndNote$$aJournal Article
000908591 520__ $$aWidely used to quantify material wear, the Archard wear law was derived from the asperity flattening model. However, the flattening model is so idealized that it cannot properly represent the real situation with general interlocked asperities, where asperity plowing dominates the wear instead of shearing flattened asperity. Using molecular dynamics simulations, we discussed if Archard law can hold during plowing wear of interlocked interface. Our results indicated Archard law breaks down when fracture dominates the wear. Furthermore, increasing interfacial adhesion or decreasing material ductility changes the dominant wear factor from plasticity to fracture. Finally, we proposed a criterion to determine when Archard wear law will break down and discussed the proposed criterion for real materials.
000908591 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000908591 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908591 7001_ $$0P:(DE-Juel1)186711$$aSong, Hengxu$$b1$$eCorresponding author
000908591 7001_ $$0P:(DE-Juel1)186075$$aSandfeld, Stefan$$b2
000908591 7001_ $$0P:(DE-HGF)0$$aLiu, Xiaoming$$b3$$eCorresponding author
000908591 7001_ $$0P:(DE-HGF)0$$aWei, Yueguang$$b4
000908591 773__ $$0PERI:(DE-600)1501092-2$$a10.1016/j.triboint.2022.107660$$gVol. 173, p. 107660 -$$p107660 -$$tTribology international$$v173$$x0301-679X$$y2022
000908591 8564_ $$uhttps://juser.fz-juelich.de/record/908591/files/13_PDFsam_TRIBINT-D-22-00641_R1.pdf$$yPublished on 2022-05-26. Available in OpenAccess from 2024-05-26.
000908591 909CO $$ooai:juser.fz-juelich.de:908591$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000908591 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186711$$aForschungszentrum Jülich$$b1$$kFZJ
000908591 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186075$$aForschungszentrum Jülich$$b2$$kFZJ
000908591 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000908591 9141_ $$y2022
000908591 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000908591 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000908591 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-02-02
000908591 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-02
000908591 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000908591 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000908591 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bTRIBOL INT : 2019$$d2021-02-02
000908591 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000908591 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000908591 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-02
000908591 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-02
000908591 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000908591 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000908591 920__ $$lyes
000908591 9201_ $$0I:(DE-Juel1)IAS-9-20201008$$kIAS-9$$lMaterials Data Science and Informatics$$x0
000908591 980__ $$ajournal
000908591 980__ $$aVDB
000908591 980__ $$aUNRESTRICTED
000908591 980__ $$aI:(DE-Juel1)IAS-9-20201008
000908591 9801_ $$aFullTexts