001     9086
005     20200423202711.0
024 7 _ |a 10.1063/1.3319591
|2 DOI
024 7 _ |a WOS:000275657500133
|2 WOS
024 7 _ |a 2128/17191
|2 Handle
037 _ _ |a PreJuSER-9086
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |a Schroeder, H.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB3130
245 _ _ |a Voltage-time dilemma of pure electronic mechanisms in resistive switching memory cells
260 _ _ |a Melville, NY
|b American Institute of Physics
|c 2010
300 _ _ |a 054517
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Applied Physics
|x 0021-8979
|0 3051
|y 5
|v 107
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Metal/insulator/metal thin film stacks showing stable resistive switching are promising candidates for future use as a nonvolatile resistive random access memory, competitive to FLASH and DRAM. Although the switching mechanisms are not completely understood a lot of theories and models try to describe the effects. One of them postulates the trapping and detrapping of electronic charge in immobile traps as the reason for the resistance changes, also known as Simmons & Verderber model. This contribution shows that this "pure electronic" switching mechanism will face a voltage-time dilemma-general to all switching insulators-at conditions competitive to the state-of-the-art FLASH. There is an incompatibility between the long retention time (10 years) and the short READ/WRITE current pulses (t(READ/WRITE) <= 100 ns) at high densities (area <= 100 x 100 nm(2)) at low applied voltages (<= 1 V). This general dilemma is exemplified in two detailed scenarios with different electronic band and defect properties. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3319591]
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Zhirnov, V.V.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Cavin, R.K.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Waser, R.
|b 3
|u FZJ
|0 P:(DE-Juel1)131022
773 _ _ |a 10.1063/1.3319591
|g Vol. 107, p. 054517
|p 054517
|q 107<054517
|0 PERI:(DE-600)1476463-5
|t Journal of applied physics
|v 107
|y 2010
|x 0021-8979
856 7 _ |u http://dx.doi.org/10.1063/1.3319591
856 4 _ |u https://juser.fz-juelich.de/record/9086/files/1.3319591.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/9086/files/1.3319591.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/9086/files/1.3319591.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/9086/files/1.3319591.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/9086/files/1.3319591.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:9086
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
914 1 _ |y 2010
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
920 1 _ |d 31.12.2010
|g IFF
|k IFF-6
|l Elektronische Materialien
|0 I:(DE-Juel1)VDB786
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 1
970 _ _ |a VDB:(DE-Juel1)118508
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-7-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21