000908608 001__ 908608
000908608 005__ 20230123110632.0
000908608 0247_ $$2doi$$a10.3390/cryst12050630
000908608 0247_ $$2Handle$$a2128/31520
000908608 0247_ $$2WOS$$aWOS:000803530800001
000908608 037__ $$aFZJ-2022-02717
000908608 041__ $$aEnglish
000908608 082__ $$a540
000908608 1001_ $$0P:(DE-HGF)0$$aMacerl, Matjaž$$b0
000908608 245__ $$aMicrostructure and Properties after Friction Stir Processing of Twin-Roll Cast Al–Mn–Cu–Be Alloy
000908608 260__ $$aBasel$$bMDPI$$c2022
000908608 3367_ $$2DRIVER$$aarticle
000908608 3367_ $$2DataCite$$aOutput Types/Journal article
000908608 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1658489275_7104
000908608 3367_ $$2BibTeX$$aARTICLE
000908608 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908608 3367_ $$00$$2EndNote$$aJournal Article
000908608 520__ $$aWe studied the effect of friction stir processing (FSP) on the microstructure and properties of high-speed twin-roll cast strips made of an experimental Al–Mn–Cu–Be alloy. The samples were examined using light, scanning, and transmission electron microscopy, microchemical analysis, X-ray diffraction, and indentation testing. During FSP, the rotational speed varied, while other parameters remained constant. The uniformity of the microstructure increased with the growing rotational speed. In the stir zone, several processes took place, and the most important were: recrystallisation of the matrix grains, fragmentation of the primary intermetallic particles Al15Mn3Be2 and their more uniform distribution in the stir zone, fracture, and dispersion of the eutectic icosahedral quasicrystalline phase (IQC), transformation of tiny Al15Mn3Be2 and IQC particles into the τ1-Al26Mn6Cu4 phase and precipitation of Al–Mn–Cu precipitates. In the thermomechanically affected zone, new dislocations formed as well as dispersion of the IQC eutectic phase and recrystallisation of the matrix grains. In the heat-affected zone, dissolution of θ’-Al2Cu precipitates occurred. The hardness variation was not severe between the stir and heat-affected zones
000908608 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000908608 536__ $$0G:(EU-Grant)823717$$aESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717)$$c823717$$fH2020-INFRAIA-2018-1$$x1
000908608 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908608 7001_ $$00000-0002-9402-2854$$aZupanič, Franc$$b1
000908608 7001_ $$0P:(DE-HGF)0$$aHočuršćak, Lara$$b2
000908608 7001_ $$00000-0002-6130-0328$$aKlobčar, Damjan$$b3
000908608 7001_ $$0P:(DE-Juel1)144926$$aKovács, András$$b4
000908608 7001_ $$0P:(DE-HGF)0$$aBončina, Tonica$$b5$$eCorresponding author
000908608 773__ $$0PERI:(DE-600)2661516-2$$a10.3390/cryst12050630$$gVol. 12, no. 5, p. 630 -$$n5$$p630 -$$tCrystals$$v12$$x2073-4352$$y2022
000908608 8564_ $$uhttps://juser.fz-juelich.de/record/908608/files/crystals-12-00630.pdf$$yOpenAccess
000908608 909CO $$ooai:juser.fz-juelich.de:908608$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000908608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144926$$aForschungszentrum Jülich$$b4$$kFZJ
000908608 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000908608 9141_ $$y2022
000908608 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000908608 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000908608 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000908608 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-03
000908608 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908608 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-03
000908608 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCRYSTALS : 2021$$d2022-11-26
000908608 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-26
000908608 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-26
000908608 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-17T10:53:02Z
000908608 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-17T10:53:02Z
000908608 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-08-17T10:53:02Z
000908608 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-26
000908608 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-26
000908608 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-26
000908608 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-26
000908608 920__ $$lyes
000908608 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000908608 980__ $$ajournal
000908608 980__ $$aVDB
000908608 980__ $$aUNRESTRICTED
000908608 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000908608 9801_ $$aFullTexts