000908609 001__ 908609
000908609 005__ 20230123110632.0
000908609 0247_ $$2doi$$a10.1038/s41467-022-31049-1
000908609 0247_ $$2Handle$$a2128/31534
000908609 0247_ $$2altmetric$$aaltmetric:129809510
000908609 0247_ $$2pmid$$a35710547
000908609 0247_ $$2WOS$$aWOS:000812995300021
000908609 037__ $$aFZJ-2022-02718
000908609 041__ $$aEnglish
000908609 082__ $$a500
000908609 1001_ $$00000-0002-4681-9447$$aMenzel, Manuel D.$$b0$$eCorresponding author
000908609 245__ $$aDuctile deformation during carbonation of serpentinized peridotite
000908609 260__ $$a[London]$$bNature Publishing Group UK$$c2022
000908609 3367_ $$2DRIVER$$aarticle
000908609 3367_ $$2DataCite$$aOutput Types/Journal article
000908609 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1658494754_6966
000908609 3367_ $$2BibTeX$$aARTICLE
000908609 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908609 3367_ $$00$$2EndNote$$aJournal Article
000908609 520__ $$aCarbonated serpentinites (listvenites) in the Samail Ophiolite, Oman, record mineralization of 1–2 Gt of CO2, but the mechanisms providing permeability for continued reactive fluid flow are unclear. Based on samples of the Oman Drilling Project, here we show that listvenites with a penetrative foliation have abundant microstructures indicating that the carbonation reaction occurred during deformation. Folded magnesite veins mark the onset of carbonation, followed by deformation during carbonate growth. Undeformed magnesite and quartz overgrowths indicate that deformation stopped before the reaction was completed. We propose deformation by dilatant granular flow and dissolution-precipitation assisted the reaction, while deformation in turn was localized in the weak reacting mass. Lithostatic pore pressures promoted this process, creating dilatant porosity for CO2 transport and solid volume increase. This feedback mechanism may be common in serpentinite-bearing fault zones and the mantle wedge overlying subduction zones, allowing massive carbonation of mantle rocks.
000908609 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000908609 588__ $$aDataset connected to DataCite
000908609 7001_ $$0P:(DE-HGF)0$$aUrai, Janos L.$$b1
000908609 7001_ $$0P:(DE-HGF)0$$aUkar, Estibalitz$$b2
000908609 7001_ $$0P:(DE-HGF)0$$aHirth, Greg$$b3
000908609 7001_ $$0P:(DE-HGF)0$$aSchwedt, Alexander$$b4
000908609 7001_ $$0P:(DE-Juel1)144926$$aKovács, András$$b5
000908609 7001_ $$0P:(DE-Juel1)169107$$aKibkalo, Lidia$$b6$$ufzj
000908609 7001_ $$00000-0003-4757-0855$$aKelemen, Peter B.$$b7
000908609 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-022-31049-1$$gVol. 13, no. 1, p. 3478$$n1$$p3478$$tNature Communications$$v13$$x2041-1723$$y2022
000908609 8564_ $$uhttps://juser.fz-juelich.de/record/908609/files/Ductile%20deformation.pdf$$yOpenAccess
000908609 8564_ $$uhttps://juser.fz-juelich.de/record/908609/files/s41467-022-31049-1.pdf$$yOpenAccess
000908609 909CO $$ooai:juser.fz-juelich.de:908609$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000908609 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144926$$aForschungszentrum Jülich$$b5$$kFZJ
000908609 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169107$$aForschungszentrum Jülich$$b6$$kFZJ
000908609 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000908609 9141_ $$y2022
000908609 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000908609 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000908609 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000908609 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908609 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-02
000908609 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000908609 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000908609 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2021$$d2022-11-11
000908609 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000908609 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000908609 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-10-13T14:44:21Z
000908609 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-10-13T14:44:21Z
000908609 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-10-13T14:44:21Z
000908609 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000908609 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000908609 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-11
000908609 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-11
000908609 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-11
000908609 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2022-11-11
000908609 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000908609 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT COMMUN : 2021$$d2022-11-11
000908609 920__ $$lyes
000908609 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000908609 980__ $$ajournal
000908609 980__ $$aVDB
000908609 980__ $$aUNRESTRICTED
000908609 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000908609 9801_ $$aFullTexts