000908611 001__ 908611
000908611 005__ 20240313103126.0
000908611 0247_ $$2doi$$a10.1371/journal.pcbi.1010233
000908611 0247_ $$2Handle$$a2128/31680
000908611 0247_ $$2pmid$$a35727857
000908611 0247_ $$2WOS$$aWOS:000829288500004
000908611 037__ $$aFZJ-2022-02720
000908611 041__ $$aEnglish
000908611 082__ $$a610
000908611 1001_ $$0P:(DE-Juel1)176778$$aBouhadjar, Younes$$b0$$eCorresponding author
000908611 245__ $$aSequence learning, prediction, and replay in networks of spiking neurons
000908611 260__ $$bPublic Library of Science$$c2022
000908611 3367_ $$2DRIVER$$aarticle
000908611 3367_ $$2DataCite$$aOutput Types/Journal article
000908611 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1661229807_2171
000908611 3367_ $$2BibTeX$$aARTICLE
000908611 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908611 3367_ $$00$$2EndNote$$aJournal Article
000908611 520__ $$aSequence learning, prediction and replay have been proposed to constitute the universal computations performed by the neocortex. The Hierarchical Temporal Memory (HTM) algorithm realizes these forms of computation. It learns sequences in an unsupervised and continuous manner using local learning rules, permits a context specific prediction of future sequence elements, and generates mismatch signals in case the predictions are not met. While the HTM algorithm accounts for a number of biological features such as topographic receptive fields, nonlinear dendritic processing, and sparse connectivity, it is based on abstract discrete-time neuron and synapse dynamics, as well as on plasticity mechanisms that can only partly be related to known biological mechanisms. Here, we devise a continuous-time implementation of the temporal-memory (TM) component of the HTM algorithm, which is based on a recurrent network of spiking neurons with biophysically interpretable variables and parameters. The model learns high-order sequences by means of a structural Hebbian synaptic plasticity mechanism supplemented with a rate-based homeostatic control. In combination with nonlinear dendritic input integration and local inhibitory feedback, this type of plasticity leads to the dynamic self-organization of narrow sequence-specific subnetworks. These subnetworks provide the substrate for a faithful propagation of sparse, synchronous activity, and, thereby, for a robust, context specific prediction of future sequence elements as well as for the autonomous replay of previously learned sequences. By strengthening the link to biology, our implementation facilitates the evaluation of the TM hypothesis based on experimentally accessible quantities. The continuous-time implementation of the TM algorithm permits, in particular, an investigation of the role of sequence timing for sequence learning, prediction and replay. We demonstrate this aspect by studying the effect of the sequence speed on the sequence learning performance and on the speed of autonomous sequence replay.
000908611 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000908611 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x1
000908611 536__ $$0G:(DE-Juel1)aca_20190115$$aAdvanced Computing Architectures (aca_20190115)$$caca_20190115$$fAdvanced Computing Architectures$$x2
000908611 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x3
000908611 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x4
000908611 536__ $$0G:(GEPRIS)491111487$$aOpen-Access-Publikationskosten Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x5
000908611 588__ $$aDataset connected to DataCite
000908611 7001_ $$0P:(DE-HGF)0$$aWouters, Dirk J.$$b1
000908611 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, Markus$$b2
000908611 7001_ $$0P:(DE-Juel1)145211$$aTetzlaff, Tom$$b3
000908611 773__ $$0PERI:(DE-600)2193340-6$$a10.1371/journal.pcbi.1010233$$pe1010233$$tPLoS Computational Biology$$v18$$x1553-734X$$y2022
000908611 8564_ $$uhttps://juser.fz-juelich.de/record/908611/files/journal.pcbi.1010233.pdf$$yOpenAccess
000908611 909CO $$ooai:juser.fz-juelich.de:908611$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000908611 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176778$$aForschungszentrum Jülich$$b0$$kFZJ
000908611 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich$$b2$$kFZJ
000908611 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145211$$aForschungszentrum Jülich$$b3$$kFZJ
000908611 9130_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000908611 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000908611 9141_ $$y2022
000908611 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000908611 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000908611 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-27
000908611 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000908611 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-27
000908611 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908611 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-27
000908611 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS COMPUT BIOL : 2021$$d2022-11-18
000908611 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-18
000908611 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-18
000908611 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-04-12T10:24:26Z
000908611 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-04-12T10:24:26Z
000908611 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2022-04-12T10:24:26Z
000908611 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-18
000908611 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-18
000908611 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-18
000908611 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-18
000908611 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-18
000908611 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-18
000908611 920__ $$lyes
000908611 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000908611 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000908611 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000908611 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x3
000908611 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x4
000908611 9801_ $$aFullTexts
000908611 980__ $$ajournal
000908611 980__ $$aVDB
000908611 980__ $$aUNRESTRICTED
000908611 980__ $$aI:(DE-Juel1)INM-6-20090406
000908611 980__ $$aI:(DE-Juel1)IAS-6-20130828
000908611 980__ $$aI:(DE-Juel1)INM-10-20170113
000908611 980__ $$aI:(DE-Juel1)PGI-7-20110106
000908611 980__ $$aI:(DE-Juel1)PGI-10-20170113
000908611 981__ $$aI:(DE-Juel1)IAS-6-20130828