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Abstract

Animals rely on different decision strategies when faced with ambiguous or uncertain cues. Depending on the
context, decisions may be biased towards events that were most frequently experienced in the past, or be more
explorative. A particular type of decision making central to cognition is sequential memory recall in response to
ambiguous cues. A previously developed spiking neuronal network implementation of sequence prediction and
recall learns complex, high-order sequences in an unsupervised manner by local, biologically inspired plasticity
rules. In response to an ambiguous cue, the model deterministically recalls the sequence shown most frequently
during training. Here, we present an extension of the model enabling a range of different decision strategies. In
this model, explorative behavior is generated by supplying neurons with noise. As the model relies on population
encoding, uncorrelated noise averages out, and the recall dynamics remain effectively deterministic. In the presence
of locally correlated noise, the averaging effect is avoided without impairing the model performance, and without
the need for large noise amplitudes. We investigate two forms of correlated noise occurring in nature: shared
synaptic background inputs, and random locking of the stimulus to spatiotemporal oscillations in the network
activity. Depending on the noise characteristics, the network adopts various replay strategies. This study thereby
provides potential mechanisms explaining how the statistics of learned sequences affect decision making, and how
decision strategies can be adjusted after learning.

Significance statement

Humans and other animals often benefit from exploring multiple alternative solutions to a given problem. Such
explorative behavior is frequently attributed to noise in the neuronal dynamics. Supplying each neuron or synapse in
a neuronal circuit with noise, however, does not necessarily lead to explorative dynamics. If decisions are triggered
by the compound activity of ensembles of neurons or synapses, noise averages out, unless it is correlated within
these ensembles. This modeling study equips a neuronal sequence-processing circuit with explorative behavior by
introducing configurable coherent noise. It contributes to an understanding of the neuronal mechanisms underlying
different decision strategies in the face of ambiguity, and highlights the role of coherent network activity during
sequential memory recall.

Introduction

Our brains are constantly processing sequences of events, such as during listening to a song or perceiving the texture
of an object. Through repeated exposure to these sequences, we effortlessly learn to predict upcoming events. In
many circumstances, we have to make a decision of what elements to recall next in response to a cue. A number of
previous studies have introduced spiking neuronal network implementations of sequence learning and replay (Klampfl
& Maass, 2013; Klos et al., 2018; Maes et al., 2020; Cone & Shouval, 2021; Bouhadjar et al., 2021). The spiking
temporal-memory (TM) model proposed in (Bouhadjar et al., 2021) provides an energy efficient sequence processing
mechanism with high storage capacity by virtue of its sparse activity. It learns high-order sequences in an unsupervised,
continuous manner using biological, local learning rules. After learning, the model successfully predicts upcoming
sequence elements in a context dependent manner, and signals the occurrence of non-anticipated stimuli. Moreover,
it can autonomously recall learned sequences in response to a cue stimulus.
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In nature, cues are often incomplete or ambiguous, and it is not always clear what sequence to recall given
the current context. Despite this ambiguity, we usually come to a clear decision on what sequence to recall. A
key factor in decision making is reward (Cohen et al., 2007; O'Doherty et al., 2017). In this regard, the optimal
decision strategy is the one that maximizes the reward, and is hence referred to as the maximization or exploitation
strategy. A number of studies demonstrate that decisions are often made in an apparently suboptimal manner, such
as probability matching (Vulkan, 2000; Myers, 2014). In binary choice tasks, for example, where the probability of
payoff is higher for one of the two possible choices, it appears most reasonable to always decide for this high-payoff
option. Instead, however, humans and other animals often decide for each of the two choices with a probability that
approximately matches the payoff probability. While this behavior appears unreasonable at first glance, it may in fact
be optimal when taking into account previous (pre-experiment) experiences, such as prior knowledge of changing
reward contingencies. In cases where the reward probability or amplitudes change over time, a more explorative
behavior is beneficial (Cohen et al., 2007; Shanks et al., 2002). Previous studies suggest that decisions are not only
determined by rewards, but also by the frequency of previously experienced input patterns (Bod et al., 2003; Hansen
et al., 2012). Accordingly, suboptimal decision strategies may at least partly arise as a consequence of this additional
influence of occurrence frequencies.

A number of previous studies propose neuronal network models of decision making in the face of ambiguous or
incomplete stimuli. The majority of these models employ some form of intrinsic stochastic dynamics or uncorrelated
noise to generate explorative behavior (Buesing et al., 2011; Legenstein & Maass, 2014; Hartmann et al., 2015;
Neftci et al.,, 2016; Jordan et al., 2019). Noise has been introduced in the form of random or non-task-related
synaptic background inputs (Jordan et al., 2019), or in the form of synaptic stochasticity (Neftci et al., 2016). An
alternative solution is provided in the studies of Hartmann et al. (2015) and Dold et al. (2019), where the “noise” is
generated by the complex but deterministic dynamics of the functional network itself, without any additional sources of
stochasticity. In most models, the noise targeting different neurons or synapses is effectively uncorrelated. Supplying
each element in a neuronal circuit with uncorrelated noise, however, does not necessarily lead to exlorative dynamics:
state variables arising from superpositions of many noisy, uncorrelated components become effectively deterministic
as a result of noise averaging (Dold et al., 2019). The total input current of a neuron generated from superpositions
of many synaptic inputs, for example, is largely unaffected by the variability in the individual synaptic responses.
Similarly, in models where individual states are encoded by the activity of neuronal populations (Legenstein & Maass,
2014), the state representations become quasi deterministic if the single-neuron noise components are uncorrelated.
Compensating this noise averaging effect by increasing the noise amplitude appears to be an obvious strategy, but
may be hard to realize by the biological system. Alternatively, noise averaging can be avoided by employing correlated
noise. As an analogy, consider a particle in a still fluid: despite the constant bombardment by surrounding molecules,
a large particle will hardly undergo any Brownian motion, because the momenta of the impinging molecules largely
average out. Only if the molecules move in a coherent manner, such as in a turbulent fluid, they can have a substantial
influence on the particle's motion.

In biological neuronal networks, coherent noise may arise by different mechanisms: neighboring neurons typically
receive inputs from partly overlapping presynaptic neuron populations. The synaptic input currents to these neurons
are therefore correlated. In the literature, this type of correlation, which results from the anatomy of neurons and
neuronal circuits, is referred to as shared-input correlation (Kriener et al., 2008; Tetzlaff et al., 2008). A second type
of correlation in synaptic input currents arises from correlations in the presynaptic spiking activity (Renart et al.,
2010; Tetzlaff et al., 2012; Helias et al., 2014). These dynamical correlations occur during stationary network states,
or can be generated by different types of nonstationary activities, such as global oscillations in the population activity
(Brunel & Hakim, 1999; Brunel, 2000) or traveling waves of activity propagating across the neuronal tissue (Sato
et al., 2012; Takahashi et al., 2015; Roxin et al., 2005; Senk et al., 2020).

This study addresses the problem of sequential decision making in the face of ambiguity and the role of coherent
noise in shaping decision strategies. We investigate how the spiking TM model of Bouhadjar et al. (2021) recalls
sequences in response to ambiguous cues in the presence of coherent noise, to what extent noise averaging can be
overcome by increasing the noise amplitude, and how different recall strategies can be achieved by adjusting the noise
characteristics. We further explore whether shared synaptic input and random stimulus locking to spatiotemporal
oscillations can serve as appropriate, natural sources of coherent noise. In Methods, we provide a detailed description
of the task and the network model. For a first read, the main findings of the study can be understood without
Methods.

Methods

In the following, we provide an overview of the task and the training protocol, the network model, and the task
performance analysis. A detailed description of the model and parameter values is provided in Tables 1 and 2.
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Learning protocol and task

During learning, the network is continuously exposed to repeated presentations of an ensemble of S sequences
si = {C, Gi2v- -+ Cicy } (Cs €N €1,...,S]) of ordered discrete items (;;, The order of the sequence elements
within a given sequence represents the temporal order of the item occurrence. Each sequence s; is presented with a
relative frequency p; in a given set of training data, where Zle p; = 1. After successful learning, the presentation
of some sequence element leads to a context dependent prediction of the subsequent stimulus. In case the prediction
is wrong the network generates a mismatch signal (see Bouhadjar et al., 2021). The network can also be configured
into a replay mode where it autonomously replays learned sequences in response to a cue signal. We design the
sequences such that they all start with the same two elements (1 = (11 = (21...(1 and (o = (12 = (o2... (o
(i € [1,...,5]). As a consequence, choosing the cue to be the first sequence element ({1) results in an ambiguity.
Here, we investigate the replay frequency of a given sequence s; as a function of its training frequency p; and study
whether the network can choose between different replay strategies.

Network model

Network structure The network consists of a population £ of Ng excitatory (“E") and a single inhibitory (“I")
neuron. The neurons in £ are randomly and recurrently connected, such that each neuron in £ receives Kgg excitatory
inputs from other neurons in £. Excitatory neurons are recurrently connected to the single inhibitory neuron. The
excitatory population £ is subdivided into M non-overlapping subpopulations My, ..., M}, each of them containing
neurons with identical stimulus preference (“receptive field"). Each subpopulation M, thereby represents a specific
element within a sequence.

External inputs during learning The network is driven by an ensemble X = {x1,...,zn,,, } of M external inputs.
Each of these external inputs z represents a specific sequence element (“A”, “B", ...), and feeds all neurons in
the subpopulation M, with the corresponding stimulus preference. The occurrence of a specific sequence element
Ci,; at time t; ; is modeled by a single spike xx(t) = 6(¢t — t; ;) generated by the corresponding external source
2. Subsequent sequence elements (; ; and ¢; j+1 within a sequence s; are presented with an inter-stimulus interval
AT = t; j41 — t; ;. Subsequent sequences s; and s;y; are separated in time by an inter-sequence time interval
ATgeq = tiv1,1 — tiyc; -

External inputs during replay After learning the set of sequences S, we present a cue signal encoding for first
sequence elements (; at time ¢/ for a number of trials NV;, where j denotes the trial id (j € [1,..., N;]). Subsequent
cues are separated by an inter-trial interval AT¢,e; = t/ —#/T1. In section A spiking neural network recalls sequences in
response to ambiguous cues, AT, j is constant and in section Random stimulus locking to spatiotemporal oscillations
as natural form of noise, AT¢,j is randomly and uniformly distributed between tmin ms and wmay.

During the replay, excitatory neurons are additionally driven by a background input implemented either in the
form of asynchronous irregular synaptic bombardment (see A spiking neural network recalls sequences in response to
ambiguous cues) or oscillatory inputs (see Random stimulus locking to spatiotemporal oscillations as natural form of
noise). The first is realized using ensembles of excitatory and inhibitory spike sources Qj, and Vj, (k € [1,..., M]),
each composed of n elements. Each source is an independent realization of a Poisson point process with a rate v.
Excitatory neurons in the same subpopulation My, receive Kgq inputs with weight Jgq from the ensemble Qj and
Kgy inputs with weights —Jgy from the ensemble Vi. Spikes from Qj and Vi give rise to a jump in the synaptic
current of the postsynaptic cell followed by an exponential decay with a time constant 7eq and 7gy, respectively. The
time average input current of a neuron 7 is

and the variance across time -
B
U?ZEZJEIC% (2)
k=0
where J = Jgq = —Jev, T8 = TeQ = Tev, and K = Kgq = Kgy. Given that the populations of background sources

are of a finite size, there is a probability that two neurons in the same subpopulation to pick a certain number of
identical sources, this gives rise to the so called shared input correlation. The correlation coefficient in the input
current is governed by

e=—. 3)
With this relationship, we can now vary the correlation coefficient by fixing K and varying n. For the special case
where ¢ is supposed to be zero, we assume that each neuron has its own set of independent Poissonian sources. The
second type of background input is implemented using an ensemble G of M sinusoidal current generators g, each
with a frequency f, amplitude a, and a phase ¢ (k € [1,..., M]). Excitatory neurons in the same subpopulation
M, receive oscillatory inputs from the same source gy.
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Neuron and synapse model For all types of neurons, the temporal evolution of the membrane potential is given
by the leaky integrate-and-fire model (6). The total synaptic input current of excitatory neurons is composed of
currents in distal dendritic branches, inhibitory currents, and currents from external sources. The inhibitory neuron
receives only inputs from excitatory neurons. Individual spikes arriving at dendritic branches evoke alpha-shaped
postsynaptic currents, see (8). The dendritic current includes an additional nonlinearity describing the generation of
dendritic action potentials (dAPs): if the dendritic current Igp exceeds a threshold 4ap, it is instantly set to the dAP
plateau current Igap, and clamped to this value for a period of duration 74ap, see (12). This plateau current leads
to a long lasting depolarization of the soma. Inhibitory inputs to excitatory neurons as well as excitatory inputs to
inhibitory neurons trigger exponential postsynaptic currents, see (9-10). The weights Jig of excitatory synapses on
inhibitory neurons are chosen such that the collective firing of a subset of p excitatory neurons in the corresponding
subpopulation causes the inhibitory neuron to fire. The weights Jg| of inhibitory synapses on excitatory neurons are
strong such that each inhibitory spike prevents all excitatory neurons in the network that have not generated a spike
yet from firing. External inputs are composed of currents resulting from the presentation of the sequence elements
or currents from background inputs (see Inputs in Table 1). All synaptic time constants, delays, and weights are
connection-type specific.

Plasticity Only excitatory to excitatory (EE) synapses are plastic. All other connections are static. The dynamics
of the EE synaptic weights J;; evolve according to a combination of an additive spike-timing-dependent plasticity
(STDP) rule (Morrison et al., 2008) and a homeostatic component (Abbott & Nelson, 2000; Tetzlaff et al., 2011).
During the replay mode, the plasticity is disabled and the EE weights are kept constant (see Table 1 for details about
the plasticity).

Network realizations and initial conditions. For every network realization, the connectivity and the initial weights
are drawn randomly and independently. All other parameters are identical for different network realizations. The
initial values of all state variables are given in Table 1 and Table 2.

Simulation details The network simulations are performed in the neural simulator NEST (Gewaltig & Diesmann,
2007) under version 3.0 (Hahne et al., 2021). The differential equations and state transitions defining the excitatory
neuron dynamics are expressed in the domain specific language NESTML (Plotnikov et al., 2016; Nagendra Babu et al.,
2021) which generates the required C++ code for the dynamic loading into NEST. Network states are synchronously
updated using exact integration of the system dynamics on a discrete-time grid with step size At (Rotter & Diesmann,
1999). The full source code for the implementation with a list of other software requirements is available at Zenodo:
https://doi.org/10.5281/zenodo.6378376.

Task performance measures

Consider the set S = {s1, s2,..., 85} of S sequences learned by the network. Let

P =A{0,{s1},{s2},....{s1,82},{s1,83},.... S}

denote the power set of S, i.e., the set of all subsets of S, including the empty set and S itself. We define the
relative replay frequency fp, of each subset P, € P of sequences as the normalized number of exclusive replays of

this subset Py, such that
P

For two sequences s; and sy, for example, we monitor the four different replay frequencies fj (no sequence is
replayed), f{s,3 (only sy is replayed), f(s,3 (only so is replayed), and f{,, 5,3 (both s1 and sy are replayed). In this
work, we refer to fy as the “failure rate”. Simultaneous replay of both sequences (f(s, s,}) refers to cases where the
network fails at coming to a unique decision.
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Summary

Populations excitatory neurons (£), inhibitory neurons (Z), external spike sources (X'), background
inputs in the form Poissonian sources (Q and V) or sinusoidal current generators (G).
& composed of M disjoint subpopulations My, and (k=1,..., M)

Connectivity
e sparse random connectivity between excitatory neurons (plastic)

e local recurrent connectivity between excitatory and inhibitory neurons (static)

Neuron model

e excitatory neurons: leaky integrate-and-fire (LIF) with nonlinear input integration
(dendritic action potentials)

e inhibitory neurons: leaky integrate-and-fire (LIF)

Synapse model exponential or alpha-shaped postsynaptic currents (PSCs)

Plasticity homeostatic spike-timing dependent plasticity in excitatory-to-excitatory connections

Name Elements Size

E=UM, M, excitatory (E) neurons Ne

z inhibitory (1) neurons N,

My, excitatory neurons in subpopulation k, My N M, =0 (Vk £1 € [1, M]) ne

Oy excitatory Poisson generators, Qx N Q; =0 (Vk #1 € [1, M]) n

Vi inhibitory Poisson generators, Vi, NV, = 0 (Vk # 1 € [1, M]) n

X ={z1,...,om} |external spike sources M

G={g1,-.-,9m} sinusoidal current generators M

Source pop-| Target popu-| Pattern

ulation lation

£ £ random; fixed in-degrees K; = Kgg, delays d;; = dege, and synaptic time constants
Ti; = Tee, plastic synaptic weights J;; (Vi € £, Vj € &€; "EE connections”)

£ T all-to-all; fixed delays d;; = djg, synaptic time constants 7;; = 7, and weights
Jij = Jie (Vi € Z,Vj € E; "IE connections” )

T E all-to-all; fixed delays d;; = dgi, synaptic time constants 7;; = 7g, and weights
Jij = Ju (Vi € €, Vj € Z; “El connections”)

T z none (“ll connections”)

Ok M random; fixed in-degrees K;=KEq, delays d;; = deq, synaptic time constants
Tij = TEQ, and weights Jij S {0, JEQ} (V’L S Mk,j S Qk,Vk‘ S [l,M]; “EQ
connections” )

Vi M, random; fixed in-degrees K;=Kgy, delays d;; = dev, synaptic time constants
Tij = Tev, and weights J;; € {O,JE\/} (Vi € Mg, j € Vi, Vk € [1,]\/1}; “EV
connections”)

Xy = xk M, one-to-all; fixed delays d;; = dex, synaptic time constants 7;; = 7ex, and weights
Jij = Jex (Vi € My, j € Xy, VEk € [1, M]; “EX connections”)

Ok = gk M one-to-all; fixed synaptic weights J;; = Jeg (Vi € My, j € Gk, Vk € [1, M]; "EG
connections” )

no self-connections ( “autapses”), no multiple connections ( “multapses”)
all unmentioned connections Z — Z, Vi, — Vi, Qr — Qi ... Xy — M, (Vk # 1) are absent

Table 1: Description of the network model (continued on next page). Parameter values are given in Tab. 2.
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Neuron and synapse

Neuron
Type leaky integrate-and-fire (LIF) dynamics
Description dynamics of membrane potential V;(¢) and spiking activity s;(t) of neuron i:

e emission of the kth spike of neuron i at time ¢ if

with somatic spike threshold 6;
e spike train: s;(t) = >, 6(t — t¥)
e reset and refractoriness:

Vi(t) =V, Vk, Vte (tf, th 4 r,ef,i]

with refractory time 7i,; and reset potential V;

e subthreshold dynamics:

TmiVi(t) = =Vi(t) + RmiLi(t) (6)

Cm,i
synaptic input current I;(t) (see Synapse)

with membrane resistance Rm,; =

, membrane time constant 7 ;, and total

e excitatory neurons: Tm,; = Tmg, Cm,i = Cm, 0; = O, Tref;i = Trete (Vi € E)

e inhibitory neurons: 7m,; = Tm,7, Cm,i = Cm, 0; = 01, Tref;s = Trery (Vi € I)

Synapse
Type continuous, exponential, or alpha-shaped postsynaptic currents (PSCs)
Description

e total synaptic input current

excitatory neurons: I; (t) = IED,i(t) + IEx,i(t) + IEI,z‘ (t), Vie €&
inhibitory neurons:  I;(t) = Lig:(t), Vi€ Z

()

with dendritic, inhibitory, excitatory, and external input currents Iep,;(t), Ie:(t),
Tig,i(t), Iex,:(t) evolving according to

Tepi(t) = > (aij * 5;)(t — diy) (8)
JEE
1 t>0
with Ozi]'(t) = Jq;jite_t/TED@(t) and @(t) = -
TED 0 else
melde: = —Ie(t) + Z Jijsj(t — dij) (9)
JET
melies = —Lea(t) + Y Jigs;(t — dij) (10)
j€E
IEx,i(t) = Is,i(t) + IB,i(t) (11)
where Is ;(t) and Ig ;(t) are the stimulus and the background input, respectively

(see input).
e suprathreshold dynamics of dendritic currents (dAP generation):
— emission of kth dAP of neuron i at time tfprﬂ- if IED,i(t(’pr,i) > Oupp

— dAP current plateau:

Iep,i(t) = Isap VK, Vt € (tﬁAp,i,tﬁAp,i + TdAp) (12)
with dAP current plateau amplitude Iqap, dAP current duration 74ap, and
dAP activation threshold O4ap

— reset: IED,i(téCAPJ' —+ TdAp) =0 (Vk})

— reset and refractoriness in response to emission of [th somatic spike of neuron
i at time t!:

Iepi(t) =0 WL, Wt € (8 th+ i) (13)

Table 1: Description of the network model (continued on next page). Parameter values are given in Tab. 2.
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Type spike-timing dependent plasticity and dAP-rate homeostasis
EE synapses

e dynamics of synaptic weight J;;(t) (EE connections):

L dJi; i .
Jmai dt] = >\+ Z T (t)é(t - [tl + dEE])I(tz ) Atmim Atmax)
{t;}
= Ayt Y6t —t))
{5}
o Y (2" = 2i()8(t — ) I(E], Alimin, Atma).
{tr}

with
— list of presynaptic spike times {t},
— list of postsynaptic spike times {¢; }' = {t;|Vt] : t; —t] + dee > Atmin}

— indicator function

I(tf7 Atmin, Atmax) = Z R(t: — t; + dee)

tal (14)
. 1 Atmin < 7 < Atmax
with R(7) = {0 clse

— maximum weight Jmax, potentiation and depression rates \;, A., homeosta-
sis rate \n, delay dgg, depression decrement y;, minimum Atmi, and maxi-
mum Atmax time lags between pairs of pre- and postsynaptic spikes at which
synapses are potentiated,

— spike trace of postsynaptic neuron i, evolving according to

dﬂ,’j _ —1 *
=T () +§:5(t —t3)
J

with presynaptic spike times ¢j and potentiation time constant 7,

— dAP trace of postsynaptic neuron i, evolving according to

dZi _
=T E() + Zk:é(t )

with onset time tﬁAp,i of the kth dAP, homeostasis time constant 7, and

— target dAP activity z*

all other synapses non-plastic

Table 1: Description of the network model (continued on next page). Parameter values are given in Tab. 2.
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e prediction mode

— stimulus
* repetitive stimulation of the network using the same set S = {s1,...,ss} of sequences s; =
{Ci,1s Ci2s- -, iy, } of ordered discrete items (; ; with number of sequences S and length C;

of ith sequence

* presentation of sequence element (; ; at time ¢; ; modeled by a single spike z(t) = 6(t — t;,;)
generated by the corresponding external source xy

* generated current as a response to the presentation of the sequence elements:

Tslsi = —Isi(t) + > Jija;(t — dij) (15)
JjEX
* inter-stimulus interval AT = t; j11 —t;,; between subsequent sequence elements (; ; and (5, j+1
within a sequence s;
* inter-sequence time interval ATseq = ti+1,1 — ti,c; between subsequent sequences s; and s;11
* example sequence sets:
- sequence set I: S={{A,F,B,D} and {AF,C,E}}

e replay mode

— stimulus
* presentation of a cue encoding for first sequence elements ¢; at time t/, where j denotes the
trial number (5 € [1,..., N¢]).
* inter-trial interval ATy, = 771 — ¢J
— background input
% in the form of correlated Poissonian inputs
eli(t) = —Tei(t) + > Jijs;(t—d)+ > Jijs;(t —d) (16)
j€Q jev
with Poissonian spike trains s;(t) of rate v, synaptic weight J; ; € {0, J} where J = Jegq =
—Jev, synaptic time constant 78 = 7eq = Tev, and delay d = dgq = dev

- the variance of Ig;(t) across time:
o = Var(Ig,i(t)) = J°Kvrs, (17)

where K = Kgq = Kegv is the number of either excitatory or inhibitory Poissonian input
per excitatory neuron

- the correlation coefficient of Ig ;(t) and Ig ;(t) across time:

(18)

g

o= Cov(Is,:(t), I ;)(t) )0 Vi€ My, Vje M (Vk#1)
2 K Vie Mg, Vje M (Vk=1),

where n is the number of either excitatory or inhibitory Poissonian sources (see Connectivity)

% or oscillatory current
]B,z’(t) = Jeg -a-sin(27rft+¢i) (19)
with amplitude a, frequency f, and population specific phase ¢; = ¢i (Vi € My)

Output

e somatic spike times {tF|Vi € £,k =1,2,...}
e dendritic currents Iep ;(t) (Vi € &)

Table 1: Description of the network model (continued on next page). Parameter values are given in Tab. 2.
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Initial conditions and network realizations

e membrane potentials: V;(0) =V, (Vi e EUT)

e dendritic currents: Igp ;(0) =0 (Vi € €)

=0and Ip;(0) =0 (Vi € &)
0(Vief)

e external currents: Ig;(0)
e inhibitory currents: Ig ;(0) =
e excitatory currents: [ig;(0) =0 (Vi € )

o synaptic weights: J;;(0) ~ U(Jo,min, Jo,max) (uniform distribution; Vi, j € &)
e spike traces: z;(0) =0 (Vi € &)

o dAP traces: z;(0) =0 (Vi € £)

e initial weights randomly and independently drawn for each network realization

o network simulations performed in NEST (Gewaltig & Diesmann, 2007) version 3.0 (Hahne et al.,
2021)

e definition of excitatory neuron model using NESTML (Plotnikov et al., 2016; Nagendra Babu et al.,
2021)

e synchronous update using exact integration of system dynamics on discrete-time grid with step
size At (Rotter & Diesmann, 1999)

e source code underlying this study: https://doi.org/10.5281/zenodo.6378376

Table 1: Description of the network model. Parameter values are given in Tab. 2.
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Model and simulation parameters

Name ‘ Value Description
Network

Ne 1200 total number of excitatory neurons

N 1 total number of inhibitory neurons

M 8 number of excitatory subpopulations (= number of external
spike sources)

ne Neg/M = 150 number of excitatory neurons per subpopulation

p 20 (target) number of active neurons per subpopulation after
learning = minimal number of coincident excitatory inputs
required to trigger a spike in postsynaptic inhibitory neurons

n {100,...,1000} number of excitatory or inhibitory Poissonian sources

Connectivity

Kee 240 number of excitatory inputs per excitatory neuron (EE in-
degree)

P Kee/Ng = 0.2 connection probability

KE N =1 number of inhibitory inputs per excitatory neuron (El in-
degree)

Kie Ne = 1200 number of excitatory inputs per inhibitory neuron (IE in-
degree)

K 0 number of inhibitory inputs per inhibitory neuron (Il in-
degree)

Keq 100 number of excitatory Poissonian inputs per excitatory neuron
(EQ)

Kev Keq = 100 number of inhibitory Poissonian inputs per excitatory neuron
(EV)

Excitatory neurons

T E 10ms membrane time constant

Tref,E 20ms absolute refractory period

Cm 250 pF membrane capacity

Vi 0mV reset potential

O 20mV (training), somatic spike threshold

7mV (replay)

Laap 200 pA dAP current plateau amplitude

TdAP 60 ms dAP duration

Odap 59 pA dAP threshold

Inhibitory neurons

Tl 5ms membrane time constant

Tref | 2ms absolute refractory period

Cm 250 pF membrane capacity

Vi 0.0mV reset potential

0, 15mV spike threshold

Table 2: Model and simulation parameters (continued on
in gray.

next page). Parameters derived from other parameters are marked
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Name Value | Description
Synapse
JiE 581.19 pA (training), weight of |E connections (EPSC amplitude)
726.49 pA (replay)
JEi —12915.49 pA (training), weight of El connections (IPSC amplitude)
—2260.21 pA (replay)
JEx 4112.20 pA (training), weight of EX connections (EPSC amplitude)
1962.64 pA (replay)
JEQ o /v KeqVTeq weight of EQ connections (EPSC amplitude)
Jev —Jeq weight of EV connections (EPSC amplitude)
JeG 1pA weight of EG connections (EPSC amplitude)
TEE 15ms synaptic time constant of EE connections
TEI 1ms synaptic time constant of El connections
TEX 2ms synaptic time constant of EX connection
TIE 0.5ms synaptic time constant of IE connections
TEQ 2ms synaptic time constant of EQ connections
TEV TEQ = 2ms synaptic time constant of EV connections
dee 2ms delay of EE connections (dendritic)
die 0.1 ms delay of IE connections
dei 0.1ms delay of El connections
dex 0.1ms delay of EX connections
deq 0.1ms delay of EQ connections
dev deq = 0.1 ms delay of EV connections
Plasticity
At 0.001 potentiation rate
Ao 0.00008 depression rate
Ah 0.0008 homeostasis rate
Jmin 0pA minimum weight
Jimax 35pA maximum weight
Jo,min 0pA minimal initial weight
Jo,max 1pA maximal initial weight
T+ 20 ms potentiation time constant
z* 10.35 target dAP activity
Th 2200 ms homeostasis time constant
Yi 1 depression decrement
Input
S {2,3} number of sequences per set
C 4 number of characters per sequence
A {6,8} alphabet length
AT 40 ms inter-stimulus interval
ATseq 100 ms inter-sequence interval
ATeue 140 ms or inter-cue interval
~ U (Umin Umax)
Umin 140 ms minimal inter-cue interval
Umax 280 ms maximal inter-cue interval
o {0,15,60} pA noise amplitude resulting from the Poissonian background
inputs
c % ={0,1} noise correlation
v 100057 rate of Poissonian background inputs
a {0,8,16} amplitude of the sinusoidal current generators
f {10, 30,70} Hz frequency of the sinusoidal current generators
Simulation
At 0.1 ms time resolution
K 300 number of training episodes
Ny 150 number of trials

Table 2: Model and simulation parameters. Parameters derived from other parameters are marked in gray. Curly brackets

depict a set of values corresponding to different experiments.
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Results

A spiking neural network recalls sequences in response to ambiguous cues

In this section, we provide a brief overview of the model and the task, illustrate how the network learns overlapping
sequences occurring with different frequencies during the training, and show how these occurrence frequencies are
encoded in the network. We then study the network responses to ambiguous cues and the influence of the occurrence
frequencies on the recall behavior in the absence or presence of noise.

Similar to (Bouhadjar et al., 2021), the model consists of a randomly and sparsely connected network of Ng exci-
tatory neurons (population £) and a single inhibitory neuron (Fig. 1A). Each excitatory neuron receives Kgg excitatory
inputs from other randomly chosen neurons in £. Excitatory neurons are subdivided into M subpopulations, each
containing neurons with identical stimulus preference: in the absence of any additional connections, all neurons in a
given subpopulation fire a spike upon presentation of a specific sequence element. The inhibitory neuron is recurrently
connected to the excitatory neurons. In contrast to (Bouhadjar et al., 2021) where each excitatory subpopulation is
equipped with its own inhibitory neuron, we here use a single inhibitory neuron to implement competition between
the subpopulations of excitatory neurons. The network is driven by external inputs, each representing a specific
sequence element (“A”, “B"”, ...), and feeds all neurons in the subpopulation M}, with the corresponding stimulus
preference. Neurons are modeled as point neurons with the membrane potential evolving according to the leaky
integrate-and-fire dynamics. The total synaptic input current of excitatory neurons is composed of currents in distal
dendritic branches, inhibitory currents, and currents from external sources. Inhibitory neurons receive only inputs
from excitatory neurons. Individual spikes from other excitatory neurons arriving at dendritic branches evoke alpha-
shaped postsynaptic currents. The dynamics of dendritic currents include a nonlinearity describing the generation of
dendritic action potentials (dAPs). External and inhibitory inputs to excitatory neurons as well as excitatory inputs
to inhibitory neurons trigger exponential postsynaptic currents. Synapses between excitatory neurons are plastic and
subject to spike-timing-dependent plasticity and homeostatic control. Details on the network model are given in
Methods.

A Before learning B After learning C Replay

stimulus AFBD..AFCE..AFCE AFBD.AFCE..AFCE A--- A--- A---

1 1 |
* £

\ /
F A E Q F Q
excitatory y y
population E B E ~ B st — E (2B e i
D C D C D C
/ \
& %
+ - + — + —
inhibitory ( ) ( ) ( )
neuron Inh Inh Inh

Figure 1: Network structure. A) The architecture constitutes a recurrent network of subpopulations of excitatory neurons
(filled gray circles) and a single inhibitory neuron (Inh). Each excitatory subpopulation contains neurons with identical stimulus
preferences. Excitatory neurons are stimulated by external sources providing sequence-element specific inputs “A”,“F", “B",
etc. Connections between and within the excitatory subpopulations are random and sparse. The inhibitory neuron is recurrently
connected to all excitatory neurons. In the depicted example, the network is repetitively presented with two sequences {A,F,C,E}
(brown) and {A,F,B,D} (blue) during learning. The sequence {A,F,C,E} occurs twice as often as {A,F,B,D}. B) After learning,
the networks forms sequence specific subnetworks (blue and brown arrows representing {A,F,B,D} and {A,F,C,E}, respectively).
The connections between subpopulations representing the sequence shown more often are stronger (thick arrows). C) During
the replay mode, the network is presented with a cue stimulus representing the first sequence element “A”. In addition, the
excitatory subpopulations receive input from distinct sources of background noise (gray traces).

During the learning, the network is exposed to repeated presentations of two sequences {A,F,B,D} and {A,F,C,E},
where the first sequence is shown with a relative frequency p and the second with 1—p (e.g., p = 0.2 in Fig. 2A). In the
following, we refer to {A,F,B,D} as sequence 1 and to {A,F,C,E} as sequence 2. Before learning, presenting a sequence
element causes all neurons in the respective subpopulation to fire. During the learning process, the repetitive sequential
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presentation of sequence elements increases the strength of connections between the corresponding subpopulations
to a point where the activation of a certain subpopulation by an external input generates dAPs in a specific subset
of neurons in the subpopulation representing the subsequent element. The generation of the dAPs results in a long-
lasting depolarization (~50-500ms) of the soma. We refer to neurons that generate a dAP as predictive neurons.
When receiving an external input, predictive neurons fire earlier as compared to non-predictive neurons. When enough
predictive neurons are present within a certain subpopulation, their advanced spike initiates a fast and strong inhibitory
feedback to all excitatory neurons, ultimately suppressing the firing of non predictive neurons. After learning, the
model develops specific subnetworks representing the learned sequences (Fig. 1B), such that the presentation of a
sequence element leads to a context dependent prediction of the subsequent element (Bouhadjar et al., 2021). As
a result of Hebbian learning, the synaptic weights in the subnetwork corresponding to the most frequent sequence
during learning are stronger than those for the less frequent sequence (Fig. 1B, Fig. 3A, Fig.4A). In the prediction
mode, this asymmetry in synaptic weights plays no role. For ambiguous stimuli, all potential outcomes are predicted,
i.e., the network predicts both “C" and “E" simultaneously in response to stimuli “A” and “F”, irrespective of the
training frequencies.

The model can be configured into a replay mode, where the network autonomously replays learned sequences in
response to a cue stimulus. This is achieved by changing the excitability of the neurons such that the activation
of a dAP alone can cause the neurons to fire (Bouhadjar et al.,, 2021). In the replay mode, we present ambiguous
cues and study whether the network can replay sequences following different strategies (Fig. 2B). We refer to the
“maximum probability” strategy (Fig. 2B, left) as the case where the network exclusively replays the sequence with
the highest occurrence frequency. “Probability matching” is referred to when the replay frequency of a sequence
matches its occurrence frequency during training (Fig. 2B, middle). We call the strategy “full exploration” when all
sequences are randomly replayed with the same frequency, irrespective of the occurrence frequency during training
(Fig. 2B, right). In Fig. 3, we illustrate the network’s decision behavior by presenting the ambiguous cue stimulus “A”
three times. In the absence of noise, the network adopts the maximum probability strategy (Fig. 3B): as a result of
the higher weights between the neurons representing the more frequent sequence, the dAPs get activated earlier in
these neurons, which advances their somatic firing times with respect to the neurons of the less frequent sequence.
This advanced response time quickly activates the inhibitory neuron, which suppresses the activity of the neurons
representing the less frequent sequence.

A B

input

AFBD

AFCE

AFCE N

AFCE AFBD AFCE max. prob. prob. matching full exploration
AFCE

seq.l seq.2 [AIFCE [A]FBD

[ ] stimulus

Figure 2: Task. A) During learning, the model is exposed to two (or more) competing sequences with different frequencies.
Here, sequence 1 ({A,F,C,E}; blue) is shown twice as often as sequence 2 ({A,F,B,D}; brown). The respective normalized
occurrence frequencies 1/3 and 2/3 are depicted by the histogram. B) During replay, the network autonomously recalls the
sequences in response to an ambiguous cue signal (first sequence element; black squares) according to different strategies.
Maximum probability (max-prob): Only the sequence with the highest occurrence frequency during training is replayed.
Probability matching (prob. matching): The replay frequency of a sequence matches its occurrence frequency during training.
Full exploration: All sequences are randomly replayed with the same frequency, irrespective of the occurrence frequency during
training. Histograms represent the replay frequencies.

To assess the replay performance quantitatively, we present the cue stimulus “A” for N; trials and examine the
replay frequency of the two sequences {A,F,B,D} and {A,F,C,E} as a function of their occurrence frequencies during
training. We define the sequences {A,F,B,D} or {A,F,C.E} to be successfully replayed if more than 50% of the
neurons in the last subpopulations “E” or “D” have fired, respectively. In the absence of noise, the network replays
only the sequence with the highest occurrence frequency p (Fig. 4E). For p < 0.5, the sequence {A,F,C,E} is the only
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Figure 3: Correlated noise enhances exploratory behavior. A) Sketch of subpopulations of excitatory neurons (boxes)
representing the elements of the two sequences {A,F,C,E} (seq. 2) and {A,F,B,D} (seq. 1). The subpopulations “C" and
“B" are unfolded showing their respective neurons. The arrows depict the connections after learning the two sequences. The
line thickness represents the synaptic weight. The presentation of the character “A” constitutes an ambiguous cue during
replay. The inhibitory neuron (Inh) mediates competition between subpopulations (WTA). B, C, D) Spiking activity in the
subpopulations depicted in panel A in response to three repetitions of the ambiguous cue “A” (black triangles at the top and
vertical dotted lines) for three different noise configurations ¢ = 0pA, ¢ = 0 (B), 0 = 15pA, ¢ = 0 (C), and o = 15pA,
¢ =1 (D). Brown, blue, and silver dots mark somatic spikes of excitatory neurons corresponding to sequence 1, sequence 2,
and both, respectively. Red dots mark spikes of the inhibitory neuron. Network size: number of subpopulations M = 8 and
number of neurons per subpopulation ng = 150. See Tab. 2 for remaining parameters.

one replayed in all trials, and for p > 0.5 the sequence {A,F,B,D} becomes the dominant one. To understand this
behavior, we inspect the response latencies t2/C of the subpopulations “B” and “C" as a function of the occurrence
frequencies of the sequences {A,F,B,D} and {AF,C,E} (Fig.4B). The mean of the response latency tZ or t“ is
smaller for the subpopulation participating in the sequence with the higher frequency. The response latencies t? and
t¢ decrease with increasing the respective occurrence frequencies. As the network is here operating in the absence of
noise, the distribution of the response latencies t%/€ across trials is narrow. Consequently, neurons representing the
most frequent sequence fire earlier in all trials. This advanced response quickly activates the inhibitory neuron, which
suppresses the activity of the neurons representing the less frequent sequence. For training frequencies between 0.4
and 0.6, the difference between tZ and t¢ is small compared to the response latency of the WTA circuit. Hence,
both sequences are occasionally replayed simultaneously (Fig. 4E).

To foster exploratory behavior, i.e., to enable occasional replay of the low-frequency sequence, we equip the
excitatory neurons with noise. In this work, we investigate two different forms of noise. Here, we first consider noise
provided in the form of stationary synaptic background input (see below for an alternative form of noise). Each
subpopulation of excitatory neurons receives input from its private pool of independent excitatory and inhibitory
Poissonian spike sources (Fig. 1C). These background inputs are parameterized by the noise amplitude o (standard
deviation of the synaptic input current arising from these background inputs) and the noise correlation ¢ (see Fig. 1C
and Methods). Only inputs to neurons of the same subpopulation are correlated by an extent parameterized by ¢. Neu-
rons in different subpopulations receive uncorrelated inputs. The noise amplitude o is chosen such the subthreshold
membrane potentials of the excitatory neurons are fluctuating without eliciting additional spikes. As a consequence,
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the distributions of response latencies t%/€ across trials may be broadened and partly overlap (Fig. 4C,D). As we

will show in the following, the network can adopt different replay strategies (Fig. 2B) depending on the amount of
this overlap. Note that noise is injected only during replay, but not during learning. During training, the weak noise
employed here hardly affects the network behavior as the external inputs (stimulus) are strong and lead to a reliable,
immediate responses.

With uncorrelated noise (¢ = 0), the replay behavior remains effectively non-explorative, i.e., only the high-
frequency sequence is replayed in response to the cue (Fig.3C). This is explained by the fact that each sequence
element is represented by a subset of p neurons. The response latency t corresponds to the population average
t= % le ts,; of the response latencies ¢ ; (time of first spike after the cue) for each individual neuron ¢ within this
subset. The across-trial variance

1 -1
v=Var(t) = —vs + LCS’US (20)

P P
of this population measure ¢ is determined by the population size p, the population averaged spike-
time variance v5:%ZfVar(t5,i), and the population averaged spike-time correlation coefficient

cs = m 7 ?751. Cov(ts;,ts;), with Cov(ts;,ts;) denoting the spike-time covariance for two neurons
i and j. The response-latency statistics vs and ¢s depend on the input noise statistics ¢ and ¢ in a unique and
monotonous manner (Goedeke & Diesmann, 2008; De la Rocha et al., 2007). In the absence of correlations
(¢ = ¢s = 0), the across-trial variance v of ¢ vanishes for large population sizes p. For finite population sizes, v is
non-zero but small (Fig. 4C). The effect of the synaptic background noise on the variability of response latencies
largely averages out. Hence, the average advance in the response of the population representing the high-frequency
sequence cannot be overcome by noise; the network typically replays only the sequence with the higher occurrence
frequency during training (Fig. 4F). For small differences in the occurrence frequencies (i.e., p = 0.5), the network
occasionally fails to replay any sequence or replays both sequences. The mechanism underlying this behavior is
explained below.

Noise averaging is efficiently avoided by introducing noise correlations. For perfectly correlated noise and, hence,
perfectly synchronous spike responses (¢ = ¢; = 1), the across-trial variance v of the response latency ¢ is identical
to the across-trial variance v of the individual spike responses, i.e., v = vs, irrespective of the population size p; see
(20). For smaller but non-zero spike correlations (0 < ¢s < 1), the latency variance v is reduced but doesn’t vanish
as p becomes large. Hence, in the presence of correlated noise, the across-trial response latency distributions for
two competing populations have a finite width and may overlap (Fig. 4D), thereby permitting an occasional replay
of the sequence observed less often during training (Fig. 4G). Replay, therefore, becomes more exploratory, such that
the occurrence frequencies during training are gradually mapped to the frequencies of sequence replay. With an
appropriate choice of the noise amplitude and correlation, even an almost perfect match between training and replay
frequencies can be achieved (probability matching; Fig. 4G).

The results presented so far can be extended towards more than two competing sequences. As a demonstration,
we train the network using three sequences {A,F,C,E}, {A,F,B,D}, and {A,F,G,H} presented with different relative
frequencies. By adjusting the noise amplitude o and correlation ¢, the replay frequencies can approximate the training
frequencies (Fig. 5).

Noise canceling cannot be overcome by increasing noise amplitude

For subpopulations of finite size p, the variance v of the response latency ¢ remains finite, and can be increased by
scaling up the variance of the noise, even without correlation; see (20). However, this solution cannot be applied to
network models where a decision is mediated by a fast WTA circuit. In the presence of uncorrelated noise with high
amplitude, the spikes from all neurons, in all competing subpopulations, are similarly dispersed. A large dispersion in
spike times prohibits a fast and reliable activation of inhibition by one of the competing subpopulations. The WTA
mechanism, therefore, fails at selecting a unique sequence. Consequently, both sequences run through in most of the
trials (Fig. 6A). An additional problem of the uncorrelated noise is that it impairs the propagation of the activity across
the subpopulations of neurons. As our model relies on the propagation of synchronously firing neurons, the spike
time dispersion resulting from the uncorrelated noise bears the risk that the spikes generated may be too dispersed to
trigger dAPs in the next subpopulation (Fig. 6). As a result of these two problems, more explorative behavior cannot
be achieved by increasing the amplitude of uncorrelated noise. Instead, the probability of simultaneous replay (no
decision) and the failure rate increase (Fig. 6B).

Noise correlations lead to more synchronous responses, thereby reducing the overlap between the within-trial
latency distributions of the two competing populations “B” and “C" (Fig.3D). In each trial, the WTA dynamics is
therefore triggered by just one of the two populations, rather than by both. Further, synchronous firing leads to a more
robust activation of the subsequent subpopulation, and hence, a more robust replay. Hence, noise correlations help
not only in generating more explorative behavior, but also in reducing replay failures and the chance of simultaneous
activation of competing sequences (Fig. 4G).
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Figure 4: Uncorrelated noise averages out in population based encoding. Dependence of A) the compound weights
(PSC amplitudes) wer (brown) and wcr (blue; see Fig. 3A), B-D) the population averaged response latencies t© and ¢
(subpopulation averaged time of first spike after the cue) for subpopulations “B” (brown) and “C" (blue), and E-G) the
relative replay frequencies of sequences 1 (brown) and 2 (blue) along with the failure rate (gray) and the joint probability of
replaying both sequences (silver) on the occurrence frequency of sequence 1 during training. Panels B-G depict results for
three different noise parameterization o = 0pA, ¢ =0 (B,E), 0 = 15pA, ¢ =0 (C,F), and 0 = 15pA, ¢ =1 (D,G). In panel
A, circles and error bars depict the mean and the standard deviation across different network realizations. In panels B-D,
circles and error bars represent the mean and the standard deviation across N; = 150 trials (cue repetitions), averaged across
5 different network realizations. In panels E-G, circles represent the mean across N; = 150 trials, averaged across 5 different
network realizations. See Tab. 2 for remaining parameters.

Noise amplitude and level of correlation control replay strategy

We know from psychophysics experiments that humans and animals are able to flexibly change the strategy by which
they select probabilistic outcomes (Shanks et al., 2002; Cohen et al., 2007). Our model is also able to express
these different strategies. For small noise amplitudes and irrespective of the correlation level, the model replays
deterministically the frequent sequence (max-prob, see Fig. 7A). With increasing the noise amplitude and sufficiently
large correlation, the replay frequency approximately matches the training frequency (probability matching, Fig. 7B).
Increasing the noise further leads to an even more explorative replay, where the replay frequencies become less
dependent on the training frequencies (Fig.7C). Full exploration requires a large amount of noise to overwrite
the asymmetry in the synaptic weights. In the presence of high-amplitude noise, neurons may become strongly
hyperpolarized during stimulus arrival, and hence, fail to respond. Further, strong noise induced depolarizations may
trigger spurious bursts of synchronous spikes.

In our work, it is also possible to change the replay strategy by changing the correlation level (see Fig.S1). If
the noise amplitude is well adjusted, a low correlation level makes the dynamics non-explorative. With increasing
the correlation level dynamics become more explorative. This suggests, therefore, that the replay strategy can be
controlled by changing the noise amplitudes or the correlation level. Adjusting noise amplitudes can be achieved in
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Figure 5: Multiple competing sequences are learned and replayed according to their occurrence frequencies (probability
matching). During learning, three partly overlapping sequences {A,F,C,E}, {A,F,.B,D}, and {A,F,G,H} are repetitively pre-
sented with relative frequencies 0.2, 0.5, 0.3, respectively (dotted red lines). After learning, the network autonomously replays
the learned sequences in response to the ambiguous cue “A” with frequencies depicted by the blue bars. Noise parameters:
o =15pA, ¢ = 1. See Tab.?2 for remaining parameters.
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Figure 6: Winner-take-all mechanism fails when increasing the amplitude of the uncorrelated noise. A) Brown, blue,
and silver dots mark somatic spikes of excitatory neurons belonging to sequence {A,F,B,D} (seq. 1), sequence {AF,C,E}
(seq. 2), or both, respectively. Red dots mark spikes from inhibitory neurons. Each trial is initiated by stimulating the first
element in the sequence (“A”, see dark arrows and vertical dashed lines). During training, the sequences 1 and 2 are shown
with relative frequencies 0.2 and 0.8, respectively. B) The relative replay frequency of sequence 1 (brown) and sequence 2
(blue) along with the failure rate (gray) and the joint probability of replaying both sequences (silver) are plotted as a function
of the relative training frequency of sequence 1. Circles represent the mean across Ny = 150 trials averaged across 5 network
realizations. Parameters: o = 60 pA and ¢ = 0. See Tab. 2 for the remaining parameters.

biology by changing the rate of the background input or by changing the effective weights, which can be modulated
by neuromodulation (Atherton et al., 2015) or attention (Baluch & Itti, 2011). So far, we studied correlations induced
by shared presynaptic inputs. To achieve explorative dynamics, shared input correlations need to be high (¢ ~ 1).
However, shared input correlations resulting from the cortical anatomy are rather low (Abeles, 1991; Braitenberg &
Schiiz, 1998; Shadlen & Newsome, 1998; Song et al., 2005). In the next section, we therefore propose an alternative
form of noise, where correlations are generated by the network dynamics.

Random stimulus locking to spatiotemporal oscillations as natural form of noise

So far, we have used shared synaptic background input in the form of stationary Poissonian spikes as a source of
correlated noise. Locally coherent noise may however also be provided in the form of randomness in stimulus timing
with respect to spatiotemporal background oscillations. In the presence of traveling cortical waves, for example,
nearby neurons in a given subpopulation share the same oscillation phase, whereas distant neurons belonging to
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Figure 7: Different replay strategies achieved by increasing the noise amplitude. The relative replay frequency of sequence
1 (brown) and sequence 2 (blue) along with the failure rate (gray) and the joint probability of replaying both sequences (silver)
are plotted as a function of the relative training frequency of sequence 1 for different noise amplitudes ¢ = 0 pA (A), o = 15 pA
(B), and o = 60 pA (C) with correlation coefficient ¢ = 1. Circles represent the mean across Ny = 150 trials, averaged across
5 different network realizations. See Tab. 2 for remaining parameters.

different subpopulations experience different phases (Fig.8). At the time of stimulus arrival, the neurons in the up
phase are more excitable and tend to fire earlier than neurons in a down phase. Spatiotemporal oscillations in cortical
activity are ubiquitous and occur in different forms (Nauhaus et al., 2009; Muller & Destexhe, 2012; Sato et al.,
2012). In nature, external stimuli are usually not consistently locked to such oscillations. It is therefore reasonable
to assume that the stimulus onset times are random with respect to the oscillation phase.

Here, we exploit this form of randomness to increase the trial-to-trial variability during replay. To investigate
its effect on the replay performance, we first train the network in the absence of any background input using two
sequences {A,F,C,E} and {A,F,B,D} with relative training frequencies p and 1 — p, respectively. During replay, we
inject an oscillating background current with amplitude a and frequency f into all excitatory neurons (see Methods).
Neurons within a given subpopulation share the same oscillation phase. Phases for different subpopulations are
randomly drawn from a uniform distribution between 0 and 27. The replay performance of the network is assessed by
monitoring the network responses to repetitive presentations of an external cue “A” with random, uniformly distributed
inter-cue intervals AT¢ye ~ U (Umin Umax). We define sequences {A,F,B,D} or {AF,C,E} to be successfully replayed
if more than 50% of the neurons in the last subpopulations “E” or “D" have fired, respectively. The analysis is
repeated for a range of training frequencies p, oscillation amplitudes a, and frequencies f.

Depending on the choice of the oscillation amplitude a and frequency f, the network replicates different replay
strategies (Fig.9). For low-amplitude oscillations, the model replays only the sequence with the higher training
frequency (max-prob). With increasing oscillation amplitude, the model becomes more explorative and occasionally
replays the less frequent sequence. By adjusting the oscillation amplitude, the replay frequency can be closely
matched to the training frequency. In line with experimental recording (Buzsaki, 2006; Buzsaki & Draguhn, 2004),
this behavior is observed for a range of physiological oscillation frequencies: alpha (10Hz), beta (30 Hz), gamma
(70Hz). Due to the low-pass filtering of the neuronal membranes and synapses, higher oscillation frequencies have
a smaller effect. Consequently, increasing the oscillation frequency leads to a more reliable replay of the frequent
sequence. For slow oscillations with long periods that are large compared to the average inter-cue interval, the
network responses in subsequent trials are more correlated. For sufficiently many trials, however, the network can
still explore different solutions.

Discussion

This work proposes a spiking neural network model able to recall sequences in response to ambiguous cues following
different strategies. In this model, explorative recall strategies are achieved by providing the network with external
coherent noise. We explore two forms of coherent noise implemented either in the form of shared synaptic input or a
random stimulus locking to global spatiotemporal oscillations in the neuronal activity. The model can switch between
different replay strategies by adjusting the noise characteristics such as the noise or oscillation amplitude, as well as
the noise correlation or oscillation frequency.

The sequence processing model proposed here relies on a form of population encoding. In the absence of
correlations, noise injected to single neurons therefore largely averages out and leads to a quasi-deterministic and
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Figure 8: Random locking of stimulus to global oscillations as a form of noise. A) Snapshot of a wave of activity traveling
across a cortical region at time t; of the 1st stimulus onset. Grayscale depicts wave amplitudes in different regions. Brown
and blue rectangles mark populations of neurons with stimulus preferences “B” and “C", respectively. B) Background inputs
to neurons in populations “B" and “C" at different times. Background inputs to each population “B” and “C" at different
times. Background inputs to neurons within each population are in phase due to their spatial proximity. Background inputs
to different populations are phase shifted. Arrows on the top depict stimulus onset times. The times t¢1,t2,... indicate input
arrival to populations “B” and “C” (dashed vertical lines are random not locked to the background activity).
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Figure 9: Background oscillations as a mean for changing the replay strategies. The relative replay frequency of sequence
1 (brown) and sequence 2 (blue) along with the failure rate (gray) and the joint probability of replaying both sequences (silver)
are plotted as a function of the relative training frequency of sequence 1 for different amplitudes a € {0, 8,16} and frequencies
of the background oscillations: f = 10Hz (B,C), f = 30Hz (A,D,E), and f = 70Hz (F,G). Circles represent the mean across
N; = 150 trials, averaged across 5 network realizations. See Tab. 2 for remaining parameters.
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non-exploratory behavior. Locally correlated noise, in contrast, permits an explorative recall behavior where the
sequence frequency during learning can be gradually mapped to the recall frequency. Furthermore, noise correlations
foster synchronization between neurons within subpopulations, and thereby lead to a more robust context-specific
activation of sequences during recall. The problem of noise averaging and the proposed solution are not unique to
the model presented here, but are generic for all systems where relevant state variables arise from superpositions
of many noisy, uncorrelated components. Fluctuations in the total input current of a single neuron resulting from
superpositions of thousands of synaptic inputs, for example, can be efficiently controlled by the level of correlation
in the presynaptic activity (Salinas & Sejnowski, 2001). Similarly, explorative behavior in other models of population
based probabilistic computing (e.g. Legenstein & Maass, 2014) can be enhanced by equipping neurons within each
population with correlated noise.

Correlation in neuronal firing can originate from both anatomical constraints or network dynamics (Tetzlaff et al.,
2012; Helias et al., 2014). In this study, we investigate both types. The first type of noise is implemented in the form
of irregular synaptic background input (Faisal et al., 2008; Fellous et al., 2004; Destexhe et al., 2001; Holt et al.,
1996), where the correlation between neurons of the same subpopulation is resulting from shared presynaptic sources
(Stroeve & Gielen, 2001; Kriener et al., 2008). From an anatomical perspective, this is reasonable as neighboring
neurons indeed receive a considerable amount of inputs from identical presynaptic neurons. However, we show that
the level of shared-input correlation required for an effective avoidance of noise averaging and maintenance of near
synchronous activity is rather high, which contradicts anatomical studies reporting small connection probabilities in
local cortical circuits, and hence, low levels of shared input correlation (Abeles, 1991; Braitenberg & Schiiz, 1998;
Song et al., 2005; Shadlen & Newsome, 1998). We therefore propose a second, biologically more plausible type of
coherent noise resulting from a random stimulus locking to an intrinsic spatiotemporal coherent activity pattern on
a large spatial scale, such as waves of cortical activity. Coherent spatiotemporal activity patterns in the cortex are
observed in many different forms and under various conditions, including different sleep states, but also in awake
behaving animals (Buzsaki, 2006; Buzsaki & Draguhn, 2004; Sato et al., 2012; Denker et al., 2018). In such states,
neighboring neurons receive coherent input with identical phase, whereas distant neurons are exposed to different
phases. Natural external stimuli such as cue signals are usually not systematically locked to this type of intrinsic
activity (unless stimuli are presented in closed-loop experiments). It is therefore reasonable to assume that the
stimulus onset is random with respect to the internal state. In this study, we employ activity waves as a specific form
of coherent spatiotemporal activity, and show that explorative behavior is generated for a range of plausible oscillation
frequencies. We propose that a similar behavior can be achieved for other non-oscillatory forms of coherent activity,
such as transient propagating wave fronts or bumps (Ermentrout, 1998; Coombes, 2005; Muller et al., 2018), as
well as by other factors modulating the excitability of neighboring neurons in a coherent manner, such as transient
neuromodulatory signals.

By changing the noise characteristics (such as the amplitude or frequency of the background activity, or the level
of correlation), the model proposed in this study can replay competing sequences according to different strategies.
For low levels of noise, the network systematically replays the sequence that occurred most often during learning
(max-prob). For higher noise levels, it can match the replay frequency to the occurrence frequency during training
(probability matching), or become even more explorative. This offers a potential mechanistic explanation of how
animals can adjust their decision strategy based on environmental conditions (Cohen et al., 2007). In the living brain,
the noise properties could be controlled by neuromodulatory signals or by inputs from other brain areas (e.g., during
attention; Cohen & Maunsell, 2009). Our and many other studies predict that, in cases where the decision strategy
is shifted towards exploration, more energy needs to be provided for noise generation. In line with this prediction,
Daw et al. (2006) show that explorative behavior is accompanied by an increase in the BOLD signal amplitude in
cortical areas associated with decision making.

A number of previous studies suggest that synaptic stochasticity, i.e., the variability in postsynaptic responses
including synaptic failure (Branco & Staras, 2009), may constitute an efficient source of noise for probabilistic
computations in neuronal circuits (Maass, 2014; Neftci et al., 2016). The total input to a neuron resulting from large
ensembles of synapses, however, is likely to be subject to noise averaging, unless the variability of synaptic responses
is correlated across synapses. To date, it remains unclear how such correlations could potentially arise. Localized
neuromodulatory signals or shared presynaptic spike histories may play a role in this.

Overall, our work ties together concepts from sequence processing and decision making in the face of ambiguity.
It demonstrates that locally coherent noise is a potential mechanism underlying exploratory behavior, and shows that
a random stimulus locking to macroscopic coherent activity patterns, e.g., traveling waves, can constitute such a
form of noise.
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Figure S1: Adjusting level of correlation permits different replay strategies. The relative replay frequencies of sequence
1 (brown, A) and 2 (blue, C) as a function of the occurrence frequency of sequence 1 during training plotted for different
correlation levels (different markers: ¢ =0, ¢ = 0.8, and ¢ = 1). Contour plot showing the dependence of the relative replay
frequencies of sequences 1 (B) and 2 (D) on the training frequency of sequence 1 and different correlation levels. Noise
amplitude 0 = 15pA. The replay frequencies are computed as the mean across N = 150 trials, averaged across 5 different
network realizations. See Tab. 2 for remaining parameters.
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