001     908613
005     20240313095015.0
037 _ _ |a FZJ-2022-02722
041 _ _ |a English
100 1 _ |a Villamar, Jose
|0 P:(DE-Juel1)191583
|b 0
|e Corresponding author
|u fzj
111 2 _ |a NEST Conference 2022
|c Online
|d 2022-06-23 - 2022-06-24
|w Germany
245 _ _ |a NEST is on the road to GPU integration
260 _ _ |c 2022
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1661321305_27668
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Most of the Top500 computer systems and all of the upcoming exascale machines employ GPUs alongside CPUs. To get the most performance out of these architectures, simulation software requires efficient support for both processor types. Decades of simulator development enable the routine simulation of large-scale neuronal network models on thousands of many-core CPUs in parallel [1]; recent GPU implementations show highly competitive results [2, 3]. Here, we present our project to integrate NEST GPU (formerly NeuronGPU [3]) into the ecosystem of the CPU-based simulator NEST [4]. NEST GPU, written in CUDA-C++, lends itself to this integration due to a similar interface and a modular structure. The development will continue within the NEST Initiative under the same GitHub organization [5], although the codes themselves are still separate. We pursue the unified, community-centered workflow already pioneered by NEST: build processes, model development (NESTML [6]), documentation standards along with quality assurance through continuous integration. We are looking forward to a fruitful exchange between NEST and NEST GPU, enabling the optimization of simulator performance under the hood while providing a common frontend for users to seamlessly harness both CPUs and GPUs in the future.
536 _ _ |a 5235 - Digitization of Neuroscience and User-Community Building (POF4-523)
|0 G:(DE-HGF)POF4-5235
|c POF4-523
|f POF IV
|x 0
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 1
536 _ _ |a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)
|0 G:(DE-Juel1)PHD-NO-GRANT-20170405
|c PHD-NO-GRANT-20170405
|x 2
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 3
536 _ _ |a MetaMoSim - Generic metadata management for reproducible high-performance-computing simulation workflows - MetaMoSim (ZT-I-PF-3-026)
|0 G:(DE-Juel-1)ZT-I-PF-3-026
|c ZT-I-PF-3-026
|x 4
536 _ _ |a JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)
|0 G:(DE-Juel1)JL SMHB-2021-2027
|c JL SMHB-2021-2027
|x 5
536 _ _ |a BMBF-03ZU1106CB - NeuroSys: Algorithm-Hardware Co-Design (Projekt C) - B (BMBF-03ZU1106CB)
|0 G:(DE-Juel1)BMBF-03ZU1106CB
|c BMBF-03ZU1106CB
|x 6
536 _ _ |a ACA - Advanced Computing Architectures (SO-092)
|0 G:(DE-HGF)SO-092
|c SO-092
|x 7
536 _ _ |a Brain-Scale Simulations (jinb33_20191101)
|0 G:(DE-Juel1)jinb33_20191101
|c jinb33_20191101
|f Brain-Scale Simulations
|x 8
536 _ _ |a Brain-Scale Simulations (jinb33_20220812)
|0 G:(DE-Juel1)jinb33_20220812
|c jinb33_20220812
|f Brain-Scale Simulations
|x 9
700 1 _ |a Gianmarco, Tiddia
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Linssen, Charl
|0 P:(DE-Juel1)176305
|b 2
|u fzj
700 1 _ |a Babu, Pooja
|0 P:(DE-Juel1)186954
|b 3
|u fzj
700 1 _ |a Pastorelli, Elena
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Paolucci, Pier Stanislao
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Morrison, Abigail
|0 P:(DE-Juel1)151166
|b 6
|u fzj
700 1 _ |a Diesmann, Markus
|0 P:(DE-Juel1)144174
|b 7
|u fzj
700 1 _ |a Golosio, Bruno
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Senk, Johanna
|0 P:(DE-Juel1)162130
|b 9
|u fzj
909 C O |o oai:juser.fz-juelich.de:908613
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)191583
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)176305
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)186954
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)151166
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)144174
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)162130
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5235
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 1
914 1 _ |y 2022
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 1
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 2
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 3
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21