000908624 001__ 908624
000908624 005__ 20230123101910.0
000908624 0247_ $$2doi$$a10.1080/10448632.2021.1997309
000908624 0247_ $$2ISSN$$a1044-8632
000908624 0247_ $$2ISSN$$a1931-7352
000908624 0247_ $$2Handle$$a2128/31522
000908624 037__ $$aFZJ-2022-02724
000908624 041__ $$aEnglish
000908624 082__ $$a530
000908624 1001_ $$0P:(DE-HGF)0$$aKurumaji, T.$$b0$$eCorresponding author
000908624 245__ $$aNéel-Type Skyrmions Detected through Polarized Small-Angle Neutron Scattering
000908624 260__ $$aLondon [u.a.]$$bTaylor and Francis$$c2021
000908624 3367_ $$2DRIVER$$aarticle
000908624 3367_ $$2DataCite$$aOutput Types/Journal article
000908624 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1658489388_2712
000908624 3367_ $$2BibTeX$$aARTICLE
000908624 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908624 3367_ $$00$$2EndNote$$aJournal Article
000908624 520__ $$aMagnetic skyrmions are two-dimensional, vortex-like spin states that carry a topological number. Due to their particle nature and emergent electromagnetic properties, skyrmions are viewed as promising candidates for information transport in future spintronics devices. A skyrmion can be described by the internal degrees of freedom of the spin configuration, termed helicity and vorticity. The two main types of skyrmions, Bloch and Néel-type, are characterized by the helicity , which is defined by the angle between the spin-modulation vector q and the spin-rotation plane [1]. Bloch-type skyrmions are characterized by a proper-screw type spin configuration with  = ±/2 (Fig. 1(a) and (b)) while Néel-type skyrmions have a cycloidal spin modulation with  = 0 or  (Fig. 1(c) and (d)). Recent studies have shown that this internal spin rotational form plays a key role in the current-induced control of skyrmions through spin-induced torques. To harness the spintronic functionalities of skyrmions, developing experimental techniques to determine the helicity is fundamentally important.
000908624 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
000908624 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908624 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x0
000908624 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
000908624 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0
000908624 773__ $$0PERI:(DE-600)2237989-7$$a10.1080/10448632.2021.1997309$$gVol. 32, no. 4, p. 20 - 22$$n4$$p20 - 22$$tNeutron news$$v32$$x1044-8632$$y2021
000908624 8564_ $$uhttps://juser.fz-juelich.de/record/908624/files/Kurumaji_News_revised_Peter_yh_TK_final.pdf$$yOpenAccess
000908624 909CO $$ooai:juser.fz-juelich.de:908624$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000908624 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
000908624 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
000908624 9141_ $$y2022
000908624 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-03
000908624 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908624 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-03
000908624 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-03
000908624 920__ $$lyes
000908624 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000908624 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x1
000908624 980__ $$ajournal
000908624 980__ $$aVDB
000908624 980__ $$aUNRESTRICTED
000908624 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000908624 980__ $$aI:(DE-588b)4597118-3
000908624 9801_ $$aFullTexts