001     908624
005     20230123101910.0
024 7 _ |a 10.1080/10448632.2021.1997309
|2 doi
024 7 _ |a 1044-8632
|2 ISSN
024 7 _ |a 1931-7352
|2 ISSN
024 7 _ |a 2128/31522
|2 Handle
037 _ _ |a FZJ-2022-02724
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Kurumaji, T.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Néel-Type Skyrmions Detected through Polarized Small-Angle Neutron Scattering
260 _ _ |a London [u.a.]
|c 2021
|b Taylor and Francis
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1658489388_2712
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Magnetic skyrmions are two-dimensional, vortex-like spin states that carry a topological number. Due to their particle nature and emergent electromagnetic properties, skyrmions are viewed as promising candidates for information transport in future spintronics devices. A skyrmion can be described by the internal degrees of freedom of the spin configuration, termed helicity and vorticity. The two main types of skyrmions, Bloch and Néel-type, are characterized by the helicity , which is defined by the angle between the spin-modulation vector q and the spin-rotation plane [1]. Bloch-type skyrmions are characterized by a proper-screw type spin configuration with  = ±/2 (Fig. 1(a) and (b)) while Néel-type skyrmions have a cycloidal spin modulation with  = 0 or  (Fig. 1(c) and (d)). Recent studies have shown that this internal spin rotational form plays a key role in the current-induced control of skyrmions through spin-induced torques. To harness the spintronic functionalities of skyrmions, developing experimental techniques to determine the helicity is fundamentally important.
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Magnetism
|0 V:(DE-MLZ)SciArea-170
|2 V:(DE-HGF)
|x 0
650 1 7 |a Magnetic Materials
|0 V:(DE-MLZ)GC-1604-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e KWS-1: Small angle scattering diffractometer
|f NL3b
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)KWS1-20140101
|5 EXP:(DE-MLZ)KWS1-20140101
|6 EXP:(DE-MLZ)NL3b-20140101
|x 0
773 _ _ |a 10.1080/10448632.2021.1997309
|g Vol. 32, no. 4, p. 20 - 22
|0 PERI:(DE-600)2237989-7
|n 4
|p 20 - 22
|t Neutron news
|v 32
|y 2021
|x 1044-8632
856 4 _ |u https://juser.fz-juelich.de/record/908624/files/Kurumaji_News_revised_Peter_yh_TK_final.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:908624
|p openaire
|p open_access
|p driver
|p VDB:MLZ
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-03
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-588b)4597118-3
|k MLZ
|l Heinz Maier-Leibnitz Zentrum
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-588b)4597118-3
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21