001     908625
005     20240712100910.0
024 7 _ |a 10.1038/s41612-022-00276-0
|2 doi
024 7 _ |a 2128/32297
|2 Handle
024 7 _ |a 35789740
|2 pmid
024 7 _ |a WOS:000819420000001
|2 WOS
037 _ _ |a FZJ-2022-02725
082 _ _ |a 530
100 1 _ |a Shen, Fuzhen
|0 P:(DE-Juel1)194205
|b 0
|e First author
245 _ _ |a Disentangling drivers of air pollutant and health risk changes during the COVID-19 lockdown in China
260 _ _ |a London
|c 2022
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1676628278_15629
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The COVID-19 restrictions in 2020 have led to distinct variations in NO2 and O3 concentrations in China. Here, the different drivers of anthropogenic emission changes, including the effects of the Chinese New Year (CNY), China’s 2018–2020 Clean Air Plan (CAP), andthe COVID-19 lockdown and their impact on NO2 and O3 are isolated by using a combined model-measurement approach. In addition, the contribution of prevailing meteorological conditions to the concentration changes was evaluated by applying a machine-learning method. The resulting impact on the multi-pollutant Health-based Air Quality Index (HAQI) is quantified. The results show that the CNY reduces NO2 concentrations on average by 26.7% each year, while the COVID-lockdown measures have led to an additional 11.6% reduction in 2020, and the CAP over 2018–2020 to a reduction in NO2 by 15.7%. On the other hand, meteorological conditions from 23 January to March 7, 2020 led to increase in NO2 of 7.8%. Neglecting the CAP and meteorological drivers thus leads to an overestimate and underestimate of the effect of the COVID-lockdown on NO2 reductions, respectively. For O3 the opposite behavior is found, with changes of +23.3%, +21.0%, +4.9%, and −0.9% for CNY, COVID-lockdown, CAP, and meteorology effects, respectively. The total effects of these drivers show a drastic reduction in multi-air pollutant-related health riskacross China, with meteorology affecting particularly the Northeast of China adversely. Importantly, the CAP’s contribution highlights the effectiveness of the Chinese government’s air-quality regulations on NO2 reduction.
536 _ _ |a 2112 - Climate Feedbacks (POF4-211)
|0 G:(DE-HGF)POF4-2112
|c POF4-211
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Geosciences
|0 V:(DE-MLZ)SciArea-140
|2 V:(DE-HGF)
|x 0
650 1 7 |a Earth, Environment and Cultural Heritage
|0 V:(DE-MLZ)GC-170-2016
|2 V:(DE-HGF)
|x 0
700 1 _ |a Hegglin, Michaela Imelda
|0 P:(DE-Juel1)192244
|b 1
|e Corresponding author
700 1 _ |a Luo, Yuanfei
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Yuan, Yue
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Wang, Bing
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Flemming, Johannes
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Wang, Junfeng
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Zhang, Yunjiang
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Chen, Mindong
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Yang, Qiang
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Ge, Xinlei
|0 0000-0001-9531-6478
|b 10
773 _ _ |a 10.1038/s41612-022-00276-0
|g Vol. 5, no. 1, p. 54
|0 PERI:(DE-600)2925628-8
|n 1
|p 54
|t npj climate and atmospheric science
|v 5
|y 2022
|x 2397-3722
856 4 _ |u https://juser.fz-juelich.de/record/908625/files/Published%20Research%20Paper-Fuzhen%20Shen.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:908625
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
|q extern4vita
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)194205
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)192244
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2112
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NPJ CLIM ATMOS SCI : 2021
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-10-13T14:26:52Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-10-13T14:26:52Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-10-13T14:26:52Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-10
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NPJ CLIM ATMOS SCI : 2021
|d 2022-11-10
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21