Hauptseite > Publikationsdatenbank > Increasing the performance of all-solid-state Li batteries by infiltration of Li-ion conducting polymer into LFP-LATP composite cathode > print |
001 | 908647 | ||
005 | 20240725202007.0 | ||
024 | 7 | _ | |a 10.1016/j.jpowsour.2022.231822 |2 doi |
024 | 7 | _ | |a 0378-7753 |2 ISSN |
024 | 7 | _ | |a 1873-2755 |2 ISSN |
024 | 7 | _ | |a 2128/31723 |2 Handle |
024 | 7 | _ | |a WOS:000842883700002 |2 WOS |
037 | _ | _ | |a FZJ-2022-02736 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Ihrig, Martin |0 P:(DE-Juel1)174298 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Increasing the performance of all-solid-state Li batteries by infiltration of Li-ion conducting polymer into LFP-LATP composite cathode |
260 | _ | _ | |a New York, NY [u.a.] |c 2022 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1721884777_24837 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Polymer-ceramic composites combine the benefits of polymers and ceramics. In particular, the infiltration of the ceramic cathode with a Li-ion-conducting polymer in an all-solid-state Li-ion battery enhances the utilization of the cathode active material (CAM) and enables the application of thicker cathodes with higher storage capacity. This concept has already been validatedin our earlier work, in which a porousLiCoO2–Li6.45Al0.05La3Zr1.6Ta0.4O12 (LLZO:Al:Ta) composite cathode was fabricated by spark plasma sintering (SPS) technique. However, its performance stability was low. In the present work, the concept is modified using an LFP-LATP cathode with LiFePO4 as the CAM, Li1.5Al0.5Ti1.5(PO4)3 as the ion-conducting phase, and tapecasting with free sintering instead of SPS. Both tape-casting and free sintering are more relevant for largescale production. The sintered LFP-LATP cathode is infiltrated with the MEEP polymer and LiC2NO4F6S2 ionconducting salt. A full cell with the polymer-infiltrated cathode, LLZO:Al:Ta separator, and Li anode shows nearly full LFP utilization in the 100 μm thick cathode with an excellent area-specific storage capacity of above 3 mAh cm−2. However, after a few dozen cycles, a Li dendrite penetrates the separator leading to abrupt capacity fading. The prevention of Li dendrite formation remains a challenge for our future work. |
536 | _ | _ | |a 1222 - Components and Cells (POF4-122) |0 G:(DE-HGF)POF4-1222 |c POF4-122 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Dashjav, Enkhtsetseg |0 P:(DE-Juel1)156509 |b 1 |u fzj |
700 | 1 | _ | |a Laptev, Alexander M. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Ye, Ruijie |0 P:(DE-Juel1)176118 |b 3 |
700 | 1 | _ | |a Grüner, Daniel |0 P:(DE-Juel1)145209 |b 4 |
700 | 1 | _ | |a Ziegner, Mirko |0 P:(DE-Juel1)129815 |b 5 |
700 | 1 | _ | |a Odenwald, Philipp |0 P:(DE-Juel1)177015 |b 6 |
700 | 1 | _ | |a Finsterbusch, Martin |0 P:(DE-Juel1)145623 |b 7 |
700 | 1 | _ | |a Tietz, Frank |0 P:(DE-Juel1)129667 |b 8 |u fzj |
700 | 1 | _ | |a Fattakhova-Rohlfing, Dina |0 P:(DE-Juel1)171780 |b 9 |
700 | 1 | _ | |a Guillon, Olivier |0 P:(DE-Juel1)161591 |b 10 |u fzj |
773 | _ | _ | |a 10.1016/j.jpowsour.2022.231822 |g Vol. 543, p. 231822 - |0 PERI:(DE-600)1491915-1 |p 231822 |t Journal of power sources |v 543 |y 2022 |x 0378-7753 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/908647/files/Increasing%20the%20performance%20of%20all-solid-state%20Li%20batteries%20by%20infiltration%20of%20Li-ion%20conducting%20polymer%20into%20LFP_LATP%20cathode.pdf |y Published on 2022-07-14. Available in OpenAccess from 2024-07-14. |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/908647/files/POWER231822_revised-1.pdf |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:908647 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)174298 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)156509 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)176118 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)145209 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)129815 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)177015 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)145623 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)129667 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)171780 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)161591 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1222 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-28 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2022-11-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-13 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J POWER SOURCES : 2021 |d 2022-11-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-13 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-13 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b J POWER SOURCES : 2021 |d 2022-11-13 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-2-20101013 |k IEK-2 |l Werkstoffstruktur und -eigenschaften |x 1 |
920 | 1 | _ | |0 I:(DE-82)080011_20140620 |k JARA-ENERGY |l JARA-ENERGY |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
980 | _ | _ | |a I:(DE-Juel1)IEK-2-20101013 |
980 | _ | _ | |a I:(DE-82)080011_20140620 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
981 | _ | _ | |a I:(DE-Juel1)IMD-1-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|