001     908647
005     20240725202007.0
024 7 _ |a 10.1016/j.jpowsour.2022.231822
|2 doi
024 7 _ |a 0378-7753
|2 ISSN
024 7 _ |a 1873-2755
|2 ISSN
024 7 _ |a 2128/31723
|2 Handle
024 7 _ |a WOS:000842883700002
|2 WOS
037 _ _ |a FZJ-2022-02736
082 _ _ |a 620
100 1 _ |a Ihrig, Martin
|0 P:(DE-Juel1)174298
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Increasing the performance of all-solid-state Li batteries by infiltration of Li-ion conducting polymer into LFP-LATP composite cathode
260 _ _ |a New York, NY [u.a.]
|c 2022
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1721884777_24837
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Polymer-ceramic composites combine the benefits of polymers and ceramics. In particular, the infiltration of the ceramic cathode with a Li-ion-conducting polymer in an all-solid-state Li-ion battery enhances the utilization of the cathode active material (CAM) and enables the application of thicker cathodes with higher storage capacity. This concept has already been validatedin our earlier work, in which a porousLiCoO2–Li6.45Al0.05La3Zr1.6Ta0.4O12 (LLZO:Al:Ta) composite cathode was fabricated by spark plasma sintering (SPS) technique. However, its performance stability was low. In the present work, the concept is modified using an LFP-LATP cathode with LiFePO4 as the CAM, Li1.5Al0.5Ti1.5(PO4)3 as the ion-conducting phase, and tapecasting with free sintering instead of SPS. Both tape-casting and free sintering are more relevant for largescale production. The sintered LFP-LATP cathode is infiltrated with the MEEP polymer and LiC2NO4F6S2 ionconducting salt. A full cell with the polymer-infiltrated cathode, LLZO:Al:Ta separator, and Li anode shows nearly full LFP utilization in the 100 μm thick cathode with an excellent area-specific storage capacity of above 3 mAh cm−2. However, after a few dozen cycles, a Li dendrite penetrates the separator leading to abrupt capacity fading. The prevention of Li dendrite formation remains a challenge for our future work.
536 _ _ |a 1222 - Components and Cells (POF4-122)
|0 G:(DE-HGF)POF4-1222
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Dashjav, Enkhtsetseg
|0 P:(DE-Juel1)156509
|b 1
|u fzj
700 1 _ |a Laptev, Alexander M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ye, Ruijie
|0 P:(DE-Juel1)176118
|b 3
700 1 _ |a Grüner, Daniel
|0 P:(DE-Juel1)145209
|b 4
700 1 _ |a Ziegner, Mirko
|0 P:(DE-Juel1)129815
|b 5
700 1 _ |a Odenwald, Philipp
|0 P:(DE-Juel1)177015
|b 6
700 1 _ |a Finsterbusch, Martin
|0 P:(DE-Juel1)145623
|b 7
700 1 _ |a Tietz, Frank
|0 P:(DE-Juel1)129667
|b 8
|u fzj
700 1 _ |a Fattakhova-Rohlfing, Dina
|0 P:(DE-Juel1)171780
|b 9
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 10
|u fzj
773 _ _ |a 10.1016/j.jpowsour.2022.231822
|g Vol. 543, p. 231822 -
|0 PERI:(DE-600)1491915-1
|p 231822
|t Journal of power sources
|v 543
|y 2022
|x 0378-7753
856 4 _ |u https://juser.fz-juelich.de/record/908647/files/Increasing%20the%20performance%20of%20all-solid-state%20Li%20batteries%20by%20infiltration%20of%20Li-ion%20conducting%20polymer%20into%20LFP_LATP%20cathode.pdf
|y Published on 2022-07-14. Available in OpenAccess from 2024-07-14.
856 4 _ |u https://juser.fz-juelich.de/record/908647/files/POWER231822_revised-1.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:908647
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174298
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)156509
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)176118
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)145209
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129815
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)177015
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)145623
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129667
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)171780
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1222
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-13
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J POWER SOURCES : 2021
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-13
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-13
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J POWER SOURCES : 2021
|d 2022-11-13
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 1
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21