000908648 001__ 908648
000908648 005__ 20240711092256.0
000908648 0247_ $$2doi$$a10.1038/s41467-022-28706-w
000908648 0247_ $$2Handle$$a2128/31542
000908648 0247_ $$2pmid$$a35232964
000908648 0247_ $$2WOS$$aWOS:000771136200007
000908648 037__ $$aFZJ-2022-02737
000908648 082__ $$a500
000908648 1001_ $$aLiu, Chang$$b0
000908648 245__ $$aMassive interstitial solid solution alloys achieve near-theoretical strength
000908648 260__ $$a[London]$$bNature Publishing Group UK$$c2022
000908648 3367_ $$2DRIVER$$aarticle
000908648 3367_ $$2DataCite$$aOutput Types/Journal article
000908648 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1670313609_2716
000908648 3367_ $$2BibTeX$$aARTICLE
000908648 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908648 3367_ $$00$$2EndNote$$aJournal Article
000908648 520__ $$aInterstitials, e.g., C, N, and O, are attractive alloying elements as small atoms on interstitial sites create strong lattice distortions and hence substantially strengthen metals. However, brittle ceramics such as oxides and carbides usually form, instead of solid solutions, when the interstitial content exceeds a critical yet low value (e.g., 2 at.%). Here we introduce a class of massive interstitial solid solution (MISS) alloys by using a highly distorted substitutional host lattice, which enables solution of massive amounts of interstitials as an additional principal element class, without forming ceramic phases. For a TiNbZr-O-C-N MISS model system, the content of interstitial O reaches 12 at.%, with no oxides formed. The alloy reveals an ultrahigh compressive yield strength of 4.2 GPa, approaching the theoretical limit, and large deformability (65% strain) at ambient temperature, without localized shear deformation. The MISS concept thus offers a new avenue in the development of metallic materials with excellent mechanical properties.
000908648 536__ $$0G:(DE-HGF)POF4-1241$$a1241 - Gas turbines (POF4-124)$$cPOF4-124$$fPOF IV$$x0
000908648 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908648 7001_ $$0P:(DE-HGF)0$$aLu, Wenjun$$b1
000908648 7001_ $$0P:(DE-HGF)0$$aXia, Wenzhen$$b2
000908648 7001_ $$0P:(DE-HGF)0$$aDu, Chaowei$$b3
000908648 7001_ $$0P:(DE-HGF)0$$aRao, Ziyuan$$b4
000908648 7001_ $$00000-0003-4728-2052$$aBest, James P.$$b5
000908648 7001_ $$0P:(DE-Juel1)164854$$aBrinckmann, Steffen$$b6
000908648 7001_ $$00000-0001-5362-0316$$aLu, Jian$$b7
000908648 7001_ $$00000-0002-4934-0458$$aGault, Baptiste$$b8
000908648 7001_ $$00000-0003-1601-8267$$aDehm, Gerhard$$b9
000908648 7001_ $$00000-0002-4543-5011$$aWu, Ge$$b10
000908648 7001_ $$00000-0002-8170-5621$$aLi, Zhiming$$b11
000908648 7001_ $$00000-0003-0194-6124$$aRaabe, Dierk$$b12$$eCorresponding author
000908648 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-022-28706-w$$gVol. 13, no. 1, p. 1102$$n1$$p1102$$tNature Communications$$v13$$x2041-1723$$y2022
000908648 8564_ $$uhttps://juser.fz-juelich.de/record/908648/files/Massive%20Interstitial%20Solid%20-%20Brinckmann.pdf$$yOpenAccess
000908648 909CO $$ooai:juser.fz-juelich.de:908648$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000908648 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164854$$aForschungszentrum Jülich$$b6$$kFZJ
000908648 9131_ $$0G:(DE-HGF)POF4-124$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1241$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vHochtemperaturtechnologien$$x0
000908648 9141_ $$y2022
000908648 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000908648 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000908648 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000908648 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908648 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-02
000908648 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000908648 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000908648 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2021$$d2022-11-11
000908648 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000908648 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000908648 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-10-13T14:44:21Z
000908648 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-10-13T14:44:21Z
000908648 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-10-13T14:44:21Z
000908648 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000908648 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000908648 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-11
000908648 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-11
000908648 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-11
000908648 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2022-11-11
000908648 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000908648 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT COMMUN : 2021$$d2022-11-11
000908648 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000908648 9801_ $$aFullTexts
000908648 980__ $$ajournal
000908648 980__ $$aVDB
000908648 980__ $$aI:(DE-Juel1)IEK-2-20101013
000908648 980__ $$aUNRESTRICTED
000908648 981__ $$aI:(DE-Juel1)IMD-1-20101013