001     908649
005     20240711092256.0
024 7 _ |a 10.1016/j.wear.2022.204403
|2 doi
024 7 _ |a 0043-1648
|2 ISSN
024 7 _ |a 1873-2577
|2 ISSN
024 7 _ |a 2128/31531
|2 Handle
024 7 _ |a WOS:000822938600001
|2 WOS
037 _ _ |a FZJ-2022-02738
082 _ _ |a 670
100 1 _ |a Patil, Piyush
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Influence of crystal orientation on twinning in austenitic stainless-steel during single micro-asperity tribology and nanoindentation
260 _ _ |a Amsterdam [u.a.]
|c 2022
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1670313557_28734
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Wear induced deformation has been the focus of numerous studies but the fundamental understanding of the influence of wear direction and crystal anisotropy on microstructure evolution has only been handful. We investigate the influence of wear direction on the deformation mechanisms in single grains with and normal orientation. We observe multivariant twin structures below the wear track. The extent of deformation and the twin density are found to be dependent on the wear direction and normal load. This study also addresses why some grains show twinning while others do not show twinning at identical external loads
536 _ _ |a 1241 - Gas turbines (POF4-124)
|0 G:(DE-HGF)POF4-1241
|c POF4-124
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Lee, Subin
|0 0000-0002-4629-8004
|b 1
700 1 _ |a Dehm, Gerhard
|0 P:(DE-HGF)0
|b 2
|e Corresponding author
700 1 _ |a Brinckmann, Steffen
|0 P:(DE-Juel1)164854
|b 3
773 _ _ |a 10.1016/j.wear.2022.204403
|g Vol. 504-505, p. 204403 -
|0 PERI:(DE-600)1501123-9
|p 204403 -
|t Wear
|v 504-505
|y 2022
|x 0043-1648
856 4 _ |u https://juser.fz-juelich.de/record/908649/files/1-s2.0-S0043164822001624-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:908649
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)164854
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-124
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Hochtemperaturtechnologien
|9 G:(DE-HGF)POF4-1241
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-17
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b WEAR : 2021
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-17
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-17
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-17
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21