000908650 001__ 908650
000908650 005__ 20240711092228.0
000908650 0247_ $$2doi$$a10.1016/j.actamat.2022.117694
000908650 0247_ $$2ISSN$$a1359-6454
000908650 0247_ $$2ISSN$$a1873-2453
000908650 0247_ $$2Handle$$a2128/31544
000908650 0247_ $$2altmetric$$aaltmetric:122180789
000908650 0247_ $$2WOS$$aWOS:000792706700010
000908650 037__ $$aFZJ-2022-02739
000908650 082__ $$a670
000908650 1001_ $$0P:(DE-HGF)0$$aTsybenko, Hanna$$b0
000908650 245__ $$aDeformation and phase transformation in polycrystalline cementite (Fe3C) during single- and multi-pass sliding wear
000908650 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2022
000908650 3367_ $$2DRIVER$$aarticle
000908650 3367_ $$2DataCite$$aOutput Types/Journal article
000908650 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1670313635_9967
000908650 3367_ $$2BibTeX$$aARTICLE
000908650 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908650 3367_ $$00$$2EndNote$$aJournal Article
000908650 520__ $$aCementite (Fe3C) plays a major role in the tribological performance of rail and bearing steels. Nonetheless, the current understanding of its deformation behavior during wear is limited because it is conventionally embedded in a matrix. Here, we investigate the deformation and chemical evolution of bulk polycrystalline cementite during single-pass sliding at a contact pressure of 31 GPa and reciprocating multi-pass sliding at 3.3 GPa. The deformation behavior of cementite was studied by electron backscatter diffraction for slip trace analysis and transmission electron microscopy. Our results demonstrate activation of several deformation mechanisms below the contact surface: dislocation slip, shear band formation, fragmentation, grain boundary sliding, and grain rotation. During sliding wear, cementite ductility is enhanced due to the confined volume, shear/compression domination, and potentially frictional heating. The microstructural alterations during multi-pass wear increase the subsurface nanoindentation hardness by up to 2.7 GPa. In addition, we report Hägg carbide (Fe5C2) formation in the uppermost deformed regions after both sliding experiments. Based on the results of electron and X-ray diffraction, as well as atom probe tomography, we propose potential sources of excess carbon and mechanisms that promote the phase transformation.
000908650 536__ $$0G:(DE-HGF)POF4-1241$$a1241 - Gas turbines (POF4-124)$$cPOF4-124$$fPOF IV$$x0
000908650 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908650 7001_ $$0P:(DE-HGF)0$$aTian, Chunhua$$b1
000908650 7001_ $$0P:(DE-HGF)0$$aRau, Julia$$b2
000908650 7001_ $$0P:(DE-HGF)0$$aBreitbach, Benjamin$$b3
000908650 7001_ $$0P:(DE-HGF)0$$aSchreiber, Paul$$b4
000908650 7001_ $$0P:(DE-HGF)0$$aGreiner, Christian$$b5
000908650 7001_ $$0P:(DE-HGF)0$$aDehm, Gerhard$$b6
000908650 7001_ $$0P:(DE-Juel1)164854$$aBrinckmann, Steffen$$b7$$eCorresponding author$$ufzj
000908650 773__ $$0PERI:(DE-600)2014621-8$$a10.1016/j.actamat.2022.117694$$gVol. 227, p. 117694 -$$p117694 -$$tActa materialia$$v227$$x1359-6454$$y2022
000908650 8564_ $$uhttps://juser.fz-juelich.de/record/908650/files/Deformation%20and%20Phase%20Transformation%20-%20Brinckmann.pdf$$yOpenAccess
000908650 909CO $$ooai:juser.fz-juelich.de:908650$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000908650 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164854$$aForschungszentrum Jülich$$b7$$kFZJ
000908650 9131_ $$0G:(DE-HGF)POF4-124$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1241$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vHochtemperaturtechnologien$$x0
000908650 9141_ $$y2022
000908650 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000908650 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000908650 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908650 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000908650 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACTA MATER : 2021$$d2022-11-15
000908650 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-15
000908650 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-15
000908650 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-15
000908650 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-15
000908650 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-15
000908650 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-15
000908650 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-15
000908650 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-15
000908650 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACTA MATER : 2021$$d2022-11-15
000908650 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000908650 9801_ $$aFullTexts
000908650 980__ $$ajournal
000908650 980__ $$aVDB
000908650 980__ $$aI:(DE-Juel1)IEK-2-20101013
000908650 980__ $$aUNRESTRICTED
000908650 981__ $$aI:(DE-Juel1)IMD-1-20101013