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Introduction

Brain-behaviour associations
are often not replicable’23.

Our aim is to identify robust and
replicable associations between
interindividual variability in brain
structure and behaviour.

We use a multivariate method to
link brain and behaviour:
Regularized Canonical
Correlation Analysis
(RCCA)*5.

To test the generalisability of the
model, we use a novel machine
learning framework that embeds
RCCA in multiple holdouts of
the data*®.

Crucially, we tested the cross-
cohort replicability of the
brain-beahviour associations.

In addition, the nature vs nurture
influence on associations was
studied with heritability.

1) Datasets:

* HCP Young Adult (HCP-YA):
(S1200), n=1047 (560 females), age
= 28.8, 22-37 years (mean, range)

« HCP-aging (HCP-A):
n=601 (353 females), age= 58.5,
36-100 years (mean, range)

Brain data (639 measures):
« Cortical Thickness (CT)
 Surface Area (SA)

* Grey Matter Volume (GMV)

Behavioural data (32 measures):
« Alertness
« Cognition
* Emotion

Age and gender were regressed out
from brain and behaviour.

Processing of brain data:

+ CTand SA: FreeSurfer v5.3.0-HCP in
HCP-YA; v6.0 in HCP-A

* GMV: CAT12.5 (both cohorts)

« Averaged by regions (200 cortical’, 32
subcortical®, 7 cerebellar?)

« Normalised within subjects by brain size
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2) Regularized Canonical Correlation Analysis:

« x and Y: subjects are in rows, weights scores
measures are in columns
ul i ul X X
* RCCA finds the weights which = u
maximize the canonical S x [TTTT] =
correlation
« Regularization: L2-norm Y Yv
constraints on weights é v
X
« RCCA was applied Eg RN N

independently in each cohort.

Latent Dimension and
Canonical Correlation

Each dot
represents one
subject

Behaviour
scores

Brain scores

Brain loadings: corr(x, Xu)
Behaviour loadings: corr(Y,yv)

3) Machine Learning Framework: Multiple holdouts*8:

= 1) Train set (64%): Train several RCCA models with different
regularization parameters

Outer split (x5)
Inner split (x5)

= 4) Hold-out set (20%): Test best model

— 2) Test set (16%): Test models and select model with best generalizability

Code available at: https:/github.com/anaston/cca pls toolkit

3) Optimisation
set (80%):

Train best RCCA
model

4) Statistical analyses: 5) Replicability:

» 1000 permutations, shuffling rows of v,
respecting family structure

» Omnibus hypothesis®: states that there is no
association in any of the outer splits. Hence, if a
significant association is found in at least one
split, the null hypothesis can be rejected.

Cross-cohort similarity of
loadings:

« Pearson’s correlation
for behaviour

« Spin test for CT and SA

6) Heritability:

Heritability (h?) and genetic
correlation (p,) of brain and
behavioural scores were studied
using a twin-based analysis in
SOLAR-Eclipse'® (HCP-YA).

The RCCA model in the HCP-YA yielded 3 significant latent dimensions. The RCCA model in
the HCP-A yielded 2 significant latent dimensions. Of these, only one latent dimension .
replicated across cohorts, with significant correlations on the behavioural (r=0.73,

p<0.001), CT (r=0.81, p<0.001) and SA (r=0.56, p<0.001) loadings.

pole associated with sensorimotor regions.

This latent dimension can be understood as an axis capturing:

Behaviour: one pole of good cognitive-control/executive-functions and positive
affect, and another pole of cognitive dysfunction/impulsivity and negative affect.

« Brain: one pole associated to areas related to higher cognitive functions, and another

Latent dimension in HCP-YA

Latent dimension

Behavioural loadings
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Heritability

« Brain scores: h?=0.85; p<0.000; Behavioural scores: h?=0.823; p<0.000
* Genetic correlation: p;=0.66; p<0.000

Shown loadings represent the average over the 5 outer splits.

Behaviour: Error bars depict one standard deviation.

CR: correct responses / RT-CT: reaction time to correct responses

GMV: Top row corresponds to MNI coordinates: -43.6, 16, 52.9. Bottom row
corresponds to MNI coordinates: -10.3, -3.9, -9.1.
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« Our results show one heritable and replicable latent dimension linking
interindividual variability in brain structure with interindividual variability in
behaviour.

* The behavioural profile of this latent dimension was previously captured in
association with brain function in the HCP-YA cohort!"'2. We extend such findings
by analysing the brain structural profile of this dimension.

« This latent dimension can be interpreted as an axis in which

subjects are spread based on their covariance between brain structure
and behaviour.

« Crucially, we test the replicability of this latent dimension and extend it
to a sample with a wider age range (HCP-A).

» We also show that the brain and behavioural scores of this latent
dimension are at least partly influenced by overlapping genetic
mechanisms.
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