001     908679
005     20230223091924.0
024 7 _ |a 10.1002/vzj2.20218
|2 doi
024 7 _ |a 1539-1663
|2 ISSN
024 7 _ |a 2128/32058
|2 Handle
024 7 _ |a WOS:000826295500001
|2 WOS
037 _ _ |a FZJ-2022-02764
082 _ _ |a 550
100 1 _ |a Esmaeelipoor Jahromi, Omid
|0 P:(DE-Juel1)185882
|b 0
|e Corresponding author
245 _ _ |a Pore‐scale simulation of mucilage drainage
260 _ _ |a Hoboken, NJ
|c 2022
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1666080369_30577
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Compared with bulk soil, rhizosphere has different properties because of the existence of root mucilage, which affects physical, chemical, and microbial processes. The slow response of rhizosphere to changes in water potential buffers water content changes and leads the rhizosphere to be wetter than bulk soil during drying. By affecting connectivity of the liquid and gas phases, mucilage can also influence solute transport and gas diffusion. Overview of the literature and previous models shows the lack of a model that describes the connectivity between different phases in the rhizosphere pore space during wetting and drying processes. A major challenge is that mucilage shows a complex behavior, which at low concentrations is more like a liquid, whereas at higher concentration, dry mucilage becomes a solid. In between, a viscoelastic state is observed where mucilage can be considered as a hydrogel. In this study a three-dimensional pore-scale model based on the lattice spring method is introduced and used to simulate drying of mucilage between two soil particles. The model is capable of reproducing spider-web-like structures that are specific for mucilage. This three-dimensional mucilage drying model is qualitatively validated via environmental scanning electron microscopy (ESEM) images of dry mucilage between glass beads. The proposed model may provide us with a new perspective on hydrodynamic processes within the pore space of the rhizosphere. In addition, the model may help to better understand further important processes that strongly depend on rhizosphere hydraulic dynamics, such as solute transport, connectivity of the liquid phase, root penetration resistance, rhizosheath formation, and microbial activity.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Knott, Mathilde
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Mysore Janakiram, Ravi Kumar
|0 P:(DE-Juel1)185884
|b 2
700 1 _ |a Rahim, Riffat
|0 P:(DE-Juel1)186975
|b 3
700 1 _ |a Kroener, Eva
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1002/vzj2.20218
|0 PERI:(DE-600)2088189-7
|n 5
|p e20218
|t Vadose zone journal
|v 21
|y 2022
|x 1539-1663
856 4 _ |u https://juser.fz-juelich.de/record/908679/files/Invoice_2256759.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/908679/files/Vadose%20Zone%20Journal%20-%202022%20-%20Esmaeelipoor%20Jahromi%20-%20Pore%25u2010scale%20simulation%20of%20mucilage%20drainage.pdf
909 C O |o oai:juser.fz-juelich.de:908679
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)185882
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)185884
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)186975
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-05-04
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-05-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-05-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b VADOSE ZONE J : 2021
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-04-16T15:13:42Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-04-16T15:13:42Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-04-16T15:13:42Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2022-11-11
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-11
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21