000908701 001__ 908701
000908701 005__ 20230123110633.0
000908701 0247_ $$2doi$$a10.1063/5.0097651
000908701 0247_ $$2Handle$$a2128/31510
000908701 0247_ $$2WOS$$aWOS:000850462200004
000908701 037__ $$aFZJ-2022-02775
000908701 082__ $$a600
000908701 1001_ $$0P:(DE-Juel1)180822$$aSavchenko, Andrii$$b0$$eCorresponding author$$ufzj
000908701 245__ $$aChiral standing spin waves in skyrmion lattice
000908701 260__ $$aMelville, NY$$bAIP Publ.$$c2022
000908701 3367_ $$2DRIVER$$aarticle
000908701 3367_ $$2DataCite$$aOutput Types/Journal article
000908701 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1662354873_24151
000908701 3367_ $$2BibTeX$$aARTICLE
000908701 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908701 3367_ $$00$$2EndNote$$aJournal Article
000908701 520__ $$aThis work studies the resonance excitations of the three-dimensional skyrmions lattice in the finite thickness plate of an isotropic chiral magnet using spin dynamics simulations. We found that the absorption spectra and resonance modes differ from those predicted by the two-dimensional model and the model of the unconfined bulk crystal. The features observed on the spectra can be explained by the formation of chiral standing spin waves, which, contrary to conventional standing spin waves, are characterized by the helical profile of dynamic magnetization of fixed chirality that is defined by the Dzyaloshinskii–Moriya interaction. In this case, the dynamic susceptibility becomes a function of the plate thickness, which gives rise to an interesting effect that manifests itself in periodical fading of the intensity of corresponding modes and makes excitation of these modes impossible at specific thicknesses
000908701 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000908701 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908701 7001_ $$0P:(DE-Juel1)176480$$aKuchkin, Vladyslav$$b1$$ufzj
000908701 7001_ $$00000-0002-3577-7966$$aRybakov, Filipp N.$$b2
000908701 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b3
000908701 7001_ $$0P:(DE-Juel1)145390$$aKiselev, Nikolai S.$$b4
000908701 773__ $$0PERI:(DE-600)2722985-3$$a10.1063/5.0097651$$gVol. 10, no. 7, p. 071111 -$$n7$$p071111$$tAPL materials$$v10$$x2166-532X$$y2022
000908701 8564_ $$uhttps://juser.fz-juelich.de/record/908701/files/Invoice_APM22-AR-3DMN2022-00310_00928.pdf
000908701 8564_ $$uhttps://juser.fz-juelich.de/record/908701/files/5.0097651.pdf$$yOpenAccess
000908701 8767_ $$8APM22-AR-3DMN2022-00310_00928$$92022-06-28$$a1200182268$$d2022-06-29$$eAPC$$jZahlung erfolgt$$zUSD 2750,-
000908701 909CO $$ooai:juser.fz-juelich.de:908701$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000908701 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180822$$aForschungszentrum Jülich$$b0$$kFZJ
000908701 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176480$$aForschungszentrum Jülich$$b1$$kFZJ
000908701 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b3$$kFZJ
000908701 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145390$$aForschungszentrum Jülich$$b4$$kFZJ
000908701 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000908701 9141_ $$y2022
000908701 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-05
000908701 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000908701 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-05
000908701 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-05
000908701 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908701 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-05
000908701 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPL MATER : 2021$$d2022-11-22
000908701 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-22
000908701 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-22
000908701 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2018-07-26T11:52:04Z
000908701 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2018-07-26T11:52:04Z
000908701 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2018-07-26T11:52:04Z
000908701 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-22
000908701 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-22
000908701 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-22
000908701 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-22
000908701 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bAPL MATER : 2021$$d2022-11-22
000908701 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000908701 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000908701 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000908701 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000908701 9801_ $$aFullTexts
000908701 980__ $$ajournal
000908701 980__ $$aVDB
000908701 980__ $$aI:(DE-Juel1)IAS-1-20090406
000908701 980__ $$aI:(DE-Juel1)PGI-1-20110106
000908701 980__ $$aI:(DE-82)080009_20140620
000908701 980__ $$aI:(DE-82)080012_20140620
000908701 980__ $$aUNRESTRICTED
000908701 980__ $$aAPC