000908701 001__ 908701 000908701 005__ 20230123110633.0 000908701 0247_ $$2doi$$a10.1063/5.0097651 000908701 0247_ $$2Handle$$a2128/31510 000908701 0247_ $$2WOS$$aWOS:000850462200004 000908701 037__ $$aFZJ-2022-02775 000908701 082__ $$a600 000908701 1001_ $$0P:(DE-Juel1)180822$$aSavchenko, Andrii$$b0$$eCorresponding author$$ufzj 000908701 245__ $$aChiral standing spin waves in skyrmion lattice 000908701 260__ $$aMelville, NY$$bAIP Publ.$$c2022 000908701 3367_ $$2DRIVER$$aarticle 000908701 3367_ $$2DataCite$$aOutput Types/Journal article 000908701 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1662354873_24151 000908701 3367_ $$2BibTeX$$aARTICLE 000908701 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000908701 3367_ $$00$$2EndNote$$aJournal Article 000908701 520__ $$aThis work studies the resonance excitations of the three-dimensional skyrmions lattice in the finite thickness plate of an isotropic chiral magnet using spin dynamics simulations. We found that the absorption spectra and resonance modes differ from those predicted by the two-dimensional model and the model of the unconfined bulk crystal. The features observed on the spectra can be explained by the formation of chiral standing spin waves, which, contrary to conventional standing spin waves, are characterized by the helical profile of dynamic magnetization of fixed chirality that is defined by the Dzyaloshinskii–Moriya interaction. In this case, the dynamic susceptibility becomes a function of the plate thickness, which gives rise to an interesting effect that manifests itself in periodical fading of the intensity of corresponding modes and makes excitation of these modes impossible at specific thicknesses 000908701 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0 000908701 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000908701 7001_ $$0P:(DE-Juel1)176480$$aKuchkin, Vladyslav$$b1$$ufzj 000908701 7001_ $$00000-0002-3577-7966$$aRybakov, Filipp N.$$b2 000908701 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b3 000908701 7001_ $$0P:(DE-Juel1)145390$$aKiselev, Nikolai S.$$b4 000908701 773__ $$0PERI:(DE-600)2722985-3$$a10.1063/5.0097651$$gVol. 10, no. 7, p. 071111 -$$n7$$p071111$$tAPL materials$$v10$$x2166-532X$$y2022 000908701 8564_ $$uhttps://juser.fz-juelich.de/record/908701/files/Invoice_APM22-AR-3DMN2022-00310_00928.pdf 000908701 8564_ $$uhttps://juser.fz-juelich.de/record/908701/files/5.0097651.pdf$$yOpenAccess 000908701 8767_ $$8APM22-AR-3DMN2022-00310_00928$$92022-06-28$$a1200182268$$d2022-06-29$$eAPC$$jZahlung erfolgt$$zUSD 2750,- 000908701 909CO $$ooai:juser.fz-juelich.de:908701$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire 000908701 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180822$$aForschungszentrum Jülich$$b0$$kFZJ 000908701 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176480$$aForschungszentrum Jülich$$b1$$kFZJ 000908701 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b3$$kFZJ 000908701 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145390$$aForschungszentrum Jülich$$b4$$kFZJ 000908701 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0 000908701 9141_ $$y2022 000908701 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-05 000908701 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000908701 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-05 000908701 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-05 000908701 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000908701 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-05 000908701 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPL MATER : 2021$$d2022-11-22 000908701 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-22 000908701 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-22 000908701 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2018-07-26T11:52:04Z 000908701 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2018-07-26T11:52:04Z 000908701 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2018-07-26T11:52:04Z 000908701 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-22 000908701 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-22 000908701 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-22 000908701 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-22 000908701 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bAPL MATER : 2021$$d2022-11-22 000908701 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0 000908701 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1 000908701 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2 000908701 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3 000908701 9801_ $$aFullTexts 000908701 980__ $$ajournal 000908701 980__ $$aVDB 000908701 980__ $$aI:(DE-Juel1)IAS-1-20090406 000908701 980__ $$aI:(DE-Juel1)PGI-1-20110106 000908701 980__ $$aI:(DE-82)080009_20140620 000908701 980__ $$aI:(DE-82)080012_20140620 000908701 980__ $$aUNRESTRICTED 000908701 980__ $$aAPC