001     908709
005     20230123110633.0
024 7 _ |a 10.1021/acssuschemeng.2c01256
|2 doi
024 7 _ |a 2128/31677
|2 Handle
024 7 _ |a WOS:000830345900001
|2 WOS
037 _ _ |a FZJ-2022-02778
082 _ _ |a 540
100 1 _ |a Schonhoff, Andreas
|0 P:(DE-Juel1)173653
|b 0
|e Corresponding author
245 _ _ |a Environmental impacts of biosurfactant production based on substrates from the sugar industry
260 _ _ |a Washington, DC
|c 2022
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1661171499_2168
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Regarding the omnipresent topic of climate change, establishing a bio-economy appears reasonable, but requires critical analysis of its products. This project-specific study (project Bio²) presents previously unknown environmental impacts caused by the novel production of biosurfactants (rhamnolipids (RL) and mannosylerythritol lipids (MEL)) based on substrates from sugar industry (molasses and sugar beet pulp) using Life Cycle Assessment (LCA). Identifying critical impacts and processes (e.g., extraction agent production) reveals optimization potentials for the considered forward-looking process designs. Based on surfactants’ specific cleaning performance, environmental impacts vary substantially for RL and MEL. Primary causes of MEL productions’ lower environmental impacts are advantageous microbial properties and process designs. Substrate choice does not play an essential role. An analysis of realistic yield changes and comparisons with conventional surfactants sharpens the view on the development position of the chosen surfactants. In particular MEL shows environmental benefits compared to today’s oleo-/petrochemical produced surfactants. Identified optimization options (e.g., increased agent recycling) and yield increases could strengthen especially the advantages of MEL. Summarizing, the results show advantages of MEL compared to RL to some degree, indicate weak points of current processes and highlight favorable options for future design of RL and MEL production, regarding their environmental impact.
536 _ _ |a 1112 - Societally Feasible Transformation Pathways (POF4-111)
|0 G:(DE-HGF)POF4-1112
|c POF4-111
|f POF IV
|x 0
536 _ _ |a BioSC - Bioeconomy Science Center (BioSC)
|0 G:(DE-Juel1)BioSC
|c BioSC
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Ihling, Nina
|0 0000-0002-5242-3641
|b 1
700 1 _ |a Schreiber, Andrea
|0 P:(DE-Juel1)130483
|b 2
700 1 _ |a Zapp, Petra
|0 P:(DE-Juel1)130493
|b 3
|u fzj
773 _ _ |a 10.1021/acssuschemeng.2c01256
|g p. acssuschemeng.2c01256
|0 PERI:(DE-600)2695697-4
|n 29
|p 9345–9358
|t ACS sustainable chemistry & engineering
|v 10
|y 2022
|x 2168-0485
856 4 _ |u https://juser.fz-juelich.de/record/908709/files/acssuschemeng.2c01256.pdf
856 4 _ |y Published on 2022-07-15. Available in OpenAccess from 2023-07-15.
|u https://juser.fz-juelich.de/record/908709/files/Manuskript.pdf
909 C O |o oai:juser.fz-juelich.de:908709
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)173653
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130483
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130493
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-111
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Energiesystemtransformation
|9 G:(DE-HGF)POF4-1112
|x 0
914 1 _ |y 2022
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS SUSTAIN CHEM ENG : 2021
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-25
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS SUSTAIN CHEM ENG : 2021
|d 2022-11-25
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-STE-20101013
|k IEK-STE
|l Systemforschung und Technologische Entwicklung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-STE-20101013
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21