Home > Publications database > The Development of New Perovskite-Type Oxygen Transport Membranes Using Machine Learning > print |
001 | 908710 | ||
005 | 20240711085645.0 | ||
024 | 7 | _ | |a 10.3390/cryst12070947 |2 doi |
024 | 7 | _ | |a 2128/31505 |2 Handle |
024 | 7 | _ | |a WOS:000832380100001 |2 WOS |
037 | _ | _ | |a FZJ-2022-02779 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Schlenz, Hartmut |0 P:(DE-Juel1)133034 |b 0 |e Corresponding author |
245 | _ | _ | |a The Development of New Perovskite-Type Oxygen Transport Membranes Using Machine Learning |
260 | _ | _ | |a Basel |c 2022 |b MDPI |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1658470328_7104 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The aim of this work is to predict suitable chemical compositions for the development of new ceramic oxygen gas separation membranes, avoiding doping with toxic cobalt or expensive rare earths. For this purpose, we have chosen the system Sr1−xBax(Ti1−y−zVyFez)O3−δ (cubic perovskite-type phases). We have evaluated available experimental data, determined missing crystallographic information using bond-valence modeling and programmed a Python code to be able to generate training data sets for property predictions using machine learning. Indeed, suitable compositions of cubic perovskite-type phases can be predicted in this way, allowing for larger electronic conductivities of up to σe = 1.6 S/cm and oxygen conductivities of up to σi = 0.008 S/cm at T = 1173 K and an oxygen partial pressure pO2 = 10−15 bar, thus enabling practical applications. |
536 | _ | _ | |a 1232 - Power-based Fuels and Chemicals (POF4-123) |0 G:(DE-HGF)POF4-1232 |c POF4-123 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Baumann, Stefan |0 P:(DE-Juel1)129587 |b 1 |
700 | 1 | _ | |a Meulenberg, Wilhelm Albert |0 P:(DE-Juel1)129637 |b 2 |u fzj |
700 | 1 | _ | |a Guillon, Olivier |0 P:(DE-Juel1)161591 |b 3 |
773 | _ | _ | |a 10.3390/cryst12070947 |g Vol. 12, no. 7, p. 947 - |0 PERI:(DE-600)2661516-2 |n 7 |p 947 - |t Crystals |v 12 |y 2022 |x 2073-4352 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/908710/files/crystals-12-00947.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:908710 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)133034 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)129587 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)129637 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)161591 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-123 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Chemische Energieträger |9 G:(DE-HGF)POF4-1232 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-03 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-03 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-02-03 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-02-03 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CRYSTALS : 2021 |d 2022-11-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2022-08-17T10:53:02Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2022-08-17T10:53:02Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2022-08-17T10:53:02Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-26 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2022-11-26 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
920 | 1 | _ | |0 I:(DE-82)080011_20140620 |k JARA-ENERGY |l JARA-ENERGY |x 1 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
980 | _ | _ | |a I:(DE-82)080011_20140620 |
981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|