000908729 001__ 908729
000908729 005__ 20240708133126.0
000908729 037__ $$aFZJ-2022-02792
000908729 1001_ $$0P:(DE-Juel1)176827$$aKraus, Stefan$$b0$$eCorresponding author$$ufzj
000908729 1112_ $$a31st Aachen Colloquium$$cAachen$$d2022-10-10 - 2022-10-12$$wGermany
000908729 245__ $$aPaths towards greenhouse gas neutrality of transport sector
000908729 260__ $$c2022
000908729 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1658390332_12172
000908729 3367_ $$033$$2EndNote$$aConference Paper
000908729 3367_ $$2BibTeX$$aINPROCEEDINGS
000908729 3367_ $$2DRIVER$$aconferenceObject
000908729 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000908729 3367_ $$2ORCID$$aOTHER
000908729 520__ $$aPathways towards greenhouse gas neutrality in the transport sectorPfade zur Treibhausgasneutralität des VerkehrssektorsStefan Kraus,a,b Julian Reul,a,b Thomas Grube,a Jochen Linßena and Detlef Stoltena,ba Institute for Techno-Economic Systems Analysis (IEK-3), Forschungszentrum Jülich GmbH, D-52425 Jülichb Chair for Fuel Cells, RWTH Aachen University, c/o Institute of Electrochemical Process Engineering, Forschungszentrum Jülich GmbH D-52425 JülichAbstractAs a part of the energy system, the transport sector must achieve the national target of greenhouse gas neutrality by 2045. In the passenger car sector, the market ramp-up of electromobility is already in full swing. However, questions arise as to how the transport sector as a whole will be able to achieve the goal of greenhouse gas neutrality. Which drivetrains and fuels should be used in which means of transport, for instance? And where do these fuels originate from considering limited renewable energy resources, which could also serve to reduce greenhouse gases in other sectors? To answer these questions and go beyond results from simulation modeling that have been presented in the literature thus far, we present here cost optimal scenarios based on a newly-developed, Python based optimization model.Apart from robust findings pertaining to the comprehensive electrification of road transport, our results show that synthetic fuels are part of the cost-optimal solution during a transitional phase. This is due to the temporally-constrained transformation of road transport fleets in favor of fully electric vehicles, e.g. resulting from vehicle lifetime. Complementing the powertrain shift in vehicle stock, the resulting fuel demand shift will greatly affect the energy sector, in an example of so-called sector coupling. On the one hand, vehicle charging and hydrogen refueling networks must be expanded. On the other, alternative energy carriers are a mix of domestic production and imports. In this context, our results indicate that electricity generation is almost exclusively domestic, whereas synthetic fuels are fully imported. Hydrogen is both produced domestically and imported from other countries. Overall, the scenario results underscore the need for near-term action to achieve the goal of greenhouse gas neutrality in the transport sector by 2045.
000908729 536__ $$0G:(DE-HGF)POF4-1111$$a1111 - Effective System Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x0
000908729 536__ $$0G:(DE-HGF)POF4-1112$$a1112 - Societally Feasible Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x1
000908729 7001_ $$0P:(DE-Juel1)180396$$aReul, Julian$$b1$$ufzj
000908729 7001_ $$0P:(DE-Juel1)129852$$aGrube, Thomas$$b2$$ufzj
000908729 7001_ $$0P:(DE-Juel1)130470$$aLinssen, Jochen$$b3$$ufzj
000908729 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b4$$ufzj
000908729 909CO $$ooai:juser.fz-juelich.de:908729$$pVDB
000908729 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176827$$aForschungszentrum Jülich$$b0$$kFZJ
000908729 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)176827$$aRWTH Aachen$$b0$$kRWTH
000908729 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180396$$aForschungszentrum Jülich$$b1$$kFZJ
000908729 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)180396$$aRWTH Aachen$$b1$$kRWTH
000908729 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129852$$aForschungszentrum Jülich$$b2$$kFZJ
000908729 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130470$$aForschungszentrum Jülich$$b3$$kFZJ
000908729 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b4$$kFZJ
000908729 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b4$$kRWTH
000908729 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1111$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x0
000908729 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1112$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x1
000908729 9141_ $$y2022
000908729 920__ $$lyes
000908729 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x0
000908729 980__ $$aabstract
000908729 980__ $$aVDB
000908729 980__ $$aI:(DE-Juel1)IEK-3-20101013
000908729 980__ $$aUNRESTRICTED
000908729 981__ $$aI:(DE-Juel1)ICE-2-20101013