
Novel Tools and Methods

Comparing Surrogates to Evaluate Precisely Timed
Higher-Order Spike Correlations
Alessandra Stella,1,3,p Peter Bouss,1,3,p Günther Palm,1,2 and Sonja Grün1,3

https://doi.org/10.1523/ENEURO.0505-21.2022

1Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA Institute
Brain Structure-Function Relationships (INM-10), Jülich Research Centre, 52428 Jülich, Germany, 2Institute of Neural
Information Processing, Ulm University, 89069 Ulm, Germany, and 3Theoretical Systems Neurobiology, RWTH Aachen
University, 52062 Aachen, Germany

Abstract

The generation of surrogate data, i.e., the modification of data to destroy a certain feature, can be considered
as the implementation of a null-hypothesis whenever an analytical approach is not feasible. Thus, surrogate
data generation has been extensively used to assess the significance of spike correlations in parallel spike
trains. In this context, one of the main challenges is to properly construct the desired null-hypothesis distribu-
tion and to avoid altering the single spike train statistics. A classical surrogate technique is uniform dithering
(UD), which displaces spikes locally and uniformly distributed, to destroy temporal properties on a fine time-
scale while keeping them on a coarser one. Here, we compare UD against five similar surrogate techniques in
the context of the detection of significant spatiotemporal spike patterns. We evaluate the surrogates for their
performance, first on spike trains based on point process models with constant firing rate, and second on
modeled nonstationary artificial data to assess the potential detection of false positive (FP) patterns in a more
complex and realistic setting. We determine which statistical features of the spike trains are modified and to
which extent. Moreover, we find that UD fails as an appropriate surrogate because it leads to a loss of spikes
in the context of binning and clipping, and thus to a large number of FP patterns. The other surrogates
achieve a better performance in detecting precisely timed higher-order correlations. Based on these insights,
we analyze experimental data from the pre-/motor cortex of macaque monkeys during a reaching-and-grasp-
ing task.

Key words: massively parallel spike recordings; neural code; significance evaluation; spatiotemporal spike pat-
terns; stochastic point processes

Significance Statement

Temporal jittering or dithering of single spikes or subsections of spike trains is a common method of gener-
ating surrogate data for the statistical analysis of temporal spike correlations. We discovered a serious
problem with the classical and widely used method of uniform dithering (UD) that can lead to an overestima-
tion of significance, i.e., to false positives (FPs) in the statistical evaluation of spatiotemporal spike patterns.
Therefore, we consider five other dithering methods, compare and evaluate their statistical properties and
test them on increasingly complex data. Finally, using the most robust surrogate method (trial shifting; TR-
SHIFT) in the analysis of experimental multiple-unit recordings, we find several highly significant patterns re-
flecting different experimental contexts.
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Introduction
The usage of surrogates has become a standard tool in

data analysis and computational statistics (Abeles and
Gat, 2001; Grün et al., 2002a; Grün, 2009; Louis et al.,
2010b). It is often used to replace the definition of an ap-
propriate null-hypothesis in classical statistical testing,
which describes the possibility that the observed effects
or results have occurred merely by chance. In statistical
textbooks and software, standard definitions of null-hy-
potheses are used, which allow the analytical derivation
and automatic computation of the corresponding signifi-
cance probabilities. In computational statistics, it has
become possible to determine these probabilities also
for more complex and not analytically tractable null-hy-
potheses, by extensive sampling from the null-hypothesis
distribution, i.e., by generating artificial data from this dis-
tribution. The generation of surrogate data follows a com-
pletely different approach. In exploratory data analysis or
scientific investigations, we may have observed an inter-
esting effect, but we often have no idea what would be an
appropriate model for “randomness,” and it would be pre-
mature to assume a standard random model, like the nor-
mal distribution, just for convenience. In this situation, we
can use the data themselves to test for the significance of
the observed effect by simply modifying them to generate
more data of the same type, which can then be used to
determine significance probabilities. Such methods are
called bootstrapping (Efron and Tibshirani, 1993), and
typical methods consist in resampling or reordering the
data, or adding small amplitude noise. The generation of
surrogate data is a particular version of this, which is typi-
cally used when we have an idea or hypothesis concern-
ing the features in the data that are relevant for the effect.
In this case, we modify or add some noise to the data to
destroy these features. If we use these modified data as
our “null-hypothesis” and the observed effect does not
occur or occurs with a very low probability, we have ob-
tained evidence that those features are indeed relevant
and our hypothesis was correct (Kass et al., 2005;
Ventura, 2010).
Here, we are interested in the interactions between hun-

dred or more neurons that were recorded in parallel by
multiple electrodes (Riehle et al., 2013; Brochier et al.,
2018). In view of the apparent randomness in the reaction

of neurons to repeated stimuli (Nawrot et al., 2008), one
important question concerns the temporal precision of
neural interactions, which has been studied by means of
pairwise (Grün et al., 2002a,b; Pipa and Grün, 2003; Pipa
et al., 2003, 2007, 2013; Grün, 2009) and higher-order
correlation analysis (Villa and Abeles, 1990; Martignon et
al., 1995; Riehle et al., 1997; Prut et al., 1998; Villa et al.,
1999; Kilavik et al., 2009; Shimazaki et al., 2012) of paral-
lel recorded spike trains. In order to demonstrate high
precision in temporal multiple-neuron interactions by sta-
tistical methods, one needs surrogate methods that de-
stroy correlations at high temporal precision but not at
low temporal precision, and that maintain as much as
possible all other statistical properties of the individual
spike trains. Thus, the basic idea was to slightly perturb
the spike times of the data. These surrogate methods are
called dithering or jittering or teetering (Date et al., 1998;
Hatsopoulos et al., 2003; Pazienti et al., 2008; Stark and
Abeles, 2009; Louis et al., 2010b); the most commonly
used of these methods is uniform dithering (UD), which
shifts each individual spike by a small uniformly distrib-
uted amount. Unfortunately, this method suffers from se-
vere problems concerning the preservation of statistical
properties like the interspike interval (ISI) distribution and
can lead to substantial spike count reduction and there-
fore to an underestimation of pattern significance proba-
bilities when combined with binarization of spike trains,
which is a prerequisite for many methods of statistical
analysis. Consequently, we introduced some different
surrogate methods and compared them with each other
and with UD in terms of statistical properties, and in par-
ticular the effect on significance evaluation of repeating
spatiotemporal spike patterns Spike PAttern Detection
and Evaluation, or SPADE; Torre et al., 2013; Quaglio et
al., 2017; Stella et al., 2019].
For this comparison, we use artificially generated data

of increasing complexity where repeated spatiotemporal
patterns can only occur by chance so that we can observe
the amount of false positive (FP) patterns. Finally, we ana-
lyze the experimental data for “true positives” using the
six different surrogates.

Materials and Methods
Surrogate methods
Generally, surrogate data are used as an implementa-

tion of a null hypothesis in statistical analysis when there
is no analytical or generative probabilistic model available.
Dithering methods, in particular, are used to differentiate
between correlations across multiple spike train data that
contain modulated firing rates (on a timescale of tens of
milliseconds) and those based on fine temporal spike cor-
relation (at a timescale of milliseconds). For example,
when single spikes are shifted by ,25ms, independently
of each other, one can assume that all dependencies on
the millisecond scale are destroyed, whereas all depend-
encies on a coarser time-scale, i.e., the time-scale of firing
rate estimation, are kept. This includes all correlation
structures between different neurons, but also between
neurons and external stimuli or conditions on a time reso-
lution of 25ms or coarser.
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Per default, we make sure that the considered surrogates
preserve the firing rate modulations of the original data; in
addition, we put our emphasis on preserving also other fea-
tures of the spike trains, such as Inter-Spike Intervals (ISIs)
and derived measures, since it is not yet clear what effect a
disturbance of ISIs may have on pattern significance. In prin-
ciple, one of course wants to keep all the features of the
spike trains, besides their correlation, but this is not possi-
ble. Thus, we aim to test here which of the dithering manipu-
lations are leading to the least FPs.
Different types of surrogates were already developed,

however, in the context of different analysis methods
(Gerstein, 2004; Pipa et al., 2008, 2013; Grün, 2009; Louis
et al., 2010a,b). Here, we compare six different surrogate
methods, four known from the literature and two newly
developed by us, and evaluate their applicability for signif-
icance assessment in spike train correlation analyses. We
do not consider surrogates that destroy the firing rate pro-
file, since we give particular attention to surrogate techni-
ques that are supposed to preserve as many features of
the individual spike train as possible, e.g., the ISI distribu-
tion and parameters derived from it such as the coefficient
of variation (CV).

Uniform Dithering
The UD method consists in displacing each individual

spike of each neuron by a small uniformly distributed ran-
dom jitter ;U[– D, 1D] around its original position. An ex-
ample sketch is shown in Figure 1A. It is also known by
the names jittering or teetering and is a classical choice
for surrogate generation and was employed in several ex-
perimental studies (Abeles and Gat, 2001; Hatsopoulos et

al., 2003; Gerstein, 2004; Shmiel et al., 2006; Maldonado
et al., 2008; Torre et al., 2016a,b). Because of its simplicity
and computational speed, it was widely used for detection
of pairwise synchrony (i.e., cross-correlogram significance
estimation; Grün, 2009; Louis et al., 2010b), higher-order
synchrony, and pattern detection (Abeles and Gat, 2001;
Gansel and Singer, 2012; Torre et al., 2016a,b). In particu-
lar, it was chosen as the surrogate generation technique
for synchrony and pattern detection using SPADE (Torre et
al., 2016a; Quaglio et al., 2017; Stella et al., 2019).
However, Louis et al. (2010a) already demonstrated in the
context of pairwise spike synchrony analysis that UD can
lead to FPs for regular firing properties (CV,1).
The dither parameter of the method D . 0 determines

the maximal displacement of a spike from its original posi-
tion. It needs to be selected appropriately, e.g., in the
range of 15–25ms (Torre et al., 2016a; Stella et al., 2019)
and is typically a multiple of the bin size parameter. If D is
too small, it causes insufficient displacement of the corre-
lated spikes and may lead to an underestimation of signifi-
cance, whereas if D is too large, it yields a strongly
smoothed firing rate profile (Pazienti et al., 2008) and, thus,
an inappropriate null-hypothesis (Louis et al., 2010b).

Uniform Dithering with dead-time (UDD)
We introduce UDD as a variant of the classical UD (Fig.

1B), because we noticed that experimental data often
have a dead-time after a spike of up to 2ms, and we
wanted to keep this property in the surrogate data. Thus,
we estimate the dead-time d from the experimental data
and conserve it during the temporal displacement of each
spike. This is done by limiting the window into which

UD UDD JISI-D

ISI-D TR-SHIFT WIN-SHUFF
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Original

Surrogate

Surrogate

Figure 1. Sketches of the surrogate techniques. A, UD. Each spike is displaced according to a uniform distribution centered on the
spike. Gray dotted rectangles represent the dithering window. B, UDD is similar to UD, but spikes are constrained not to be closer
to each other than a given dead-time. Green shadows represent the dead-time after each spike. Gray dotted rectangles represent
the dithering window. C, JISI-D. Each spike is displaced according to the JISI distribution of the neuron, sampled from the data.
JISI distribution, projected in a two-dimensional plane, is represented in blue. On the x- and y-axes, we represent the projections of
the first and second ISI given three spikes. D, ISI-D. Each spike is displaced according to the ISI distribution of the neuron, sampled
from the data. The ISI distribution is represented in blue, along with its intensity. E, TR-SHIFT. Each trial is shifted by a randomly
chosen amount from a uniform distribution (represented in green and pink), independently across trials and neurons. F, WIN-
SHUFF. Binned spike data are shuffled within exclusive windows (marked green and pink).
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spikes can be dithered. The uniform displacement of each
spike is limited by the intervals to the neighboring spikes
minus the dead-time d. Thus, it does not allow two dith-
ered spikes to have a temporal distance smaller than the
dead-time, and, unlike for UD, the displacement of each
spike is hence not independent of its neighbor. As de-
scribed later (in Results, Origin of spike count reduction),
a dead-time may be introduced by spike sorting. Further,
the biological absolute refractory period of neurons can
yield minimal intervals larger than those inserted by the
spike sorting. We estimate the dead-time for each neuron
to be the minimum ISI across all trials. In case of low firing
rates, the minimum ISI may be still in the range of hun-
dreds of milliseconds, complicating the estimation of a bi-
ologically reasonable dead-time. For this reason, we
define a maximal dead-time parameter dmax such that, if
the minimal ISI exceeds dmax (in our case 4ms), then we
set d = dmax.

Joint-ISI dithering (JISI-D)
Gerstein (2004) suggested to dither spikes of adjacent

ISI intervals to keep the distribution of the preceding and
following ISIs relative to a spike according to the joint-ISI
probability distribution (JISI-D; Fig. 1C; Gerstein, 2004;
Louis et al., 2010a). This probability distribution is derived
from the original data for each neuron by calculating the
corresponding JISI histogram (with a default bin size of
1ms). Dithering one spike according to such a two-di-
mensional histogram corresponds to moving the spike
along the anti-diagonal of the JISI distribution (Gerstein,
2004; Louis et al., 2010a).
Unfortunately, experimental recordings are often nonsta-

tionary and too short to comprise enough spikes to esti-
mate the underlying JISI probability distribution. Therefore,
we apply on the JISI histogram a 2d-Gaussian smoothing
with variance s2, with s of the order of milliseconds (Louis
et al., 2010a).

ISI dithering (ISI-D)
ISI-D (Fig. 1D), unlike JISI-D, does not consider the pair

of a current and its subsequent ISI, instead, it dithers the in-
dividual spikes according to the ISI probability distribution
and ignores its sequence. However, for practical reasons,
we implemented ISI-D as a special case of the JISI-D as-
suming that two consecutive ISIs are independent, i.e., that
the JISI histogram can be represented as the product of
the ISI histogram with itself pJISIðt ; t 9Þ ¼ pISIðtÞ � pISIðt 9Þ.
Thus, in comparison to the JISI-D, ISI-D does not take into
account the correlations of subsequent ISI pairs and is par-
ticularly useful when there are not enough data to estimate
the JISI distribution. As a result, not the distribution of pairs
of subsequent ISIs are preserved, but the distribution of the
single ISIs regardless of their order.

Trial shifting (TR-SHIFT)
As an alternative to the dithering of single spikes, Pipa

et al. (2008) introduced dithering of the entire spike train.
This has the advantage that firing rate and ISI structure in
the data are completely kept intact, but potential correla-
tions across spike trains are destroyed. TR-SHIFT (Fig.
1E; Pipa et al., 2008; Louis et al., 2010b) consists of

shifting all spike times identically by a random uniform
amount ;U[– D, 1D], independently neuron by neuron
and trial by trial. The method requires the time randomiza-
tion to be different across neurons in the different trials,
such that repeating identical patterns are shifted into dif-
ferent patterns from trial to trial. Therefore, the method re-
quires a segmentation of the spike trains into longer
temporal sequences, called trials here. These could also
be longer spike sequences that are separated by relatively
long intervals between spikes as suggested by Harrison
and Geman (2009). In our case, the trials are defined by
the experimental protocol. TR-SHIFT has the benefit of
keeping the entire spike train structure intact during each
trial.

Window shuffling (WIN-SHUFF)
Finally, we designed a method that, by construction,

preserves the spike count of the discretized original spike
train in all surrogate realizations. We introduce WIN-
SHUFF (Fig. 1F), which divides the spike train into succes-
sive and exclusive small windows of predefined duration
D WS, and further divides the windows into bins of length b
(DWS should then be a multiple of b). The bins are then
shuffled within each window. Additionally, spike times
are randomized within each bin. The firing rate profile is
modified by the local shuffling of the spikes to be station-
ary inside in window of duration DWS. To facilitate the
comparison to the other methods, we fix throughout the
paper DWS = 2D.

SPADE
One important application of the surrogate methods

compared here is a software for the evaluation of spatio-
temporal spike patterns that occur repeatedly in multiple
unit recordings. This software, called SPADE (Torre et al.,
2013; Quaglio et al., 2017; Stella et al., 2019), is quite
complex and described here. It combines the extensive
use of dithering techniques with a computer science
method [frequent itemset mining (FIM); Borgelt, 2012].
SPADE has to resort to this rather technical method be-
cause there is usually a huge number of repeating pat-
terns that will be found also for each of the surrogate
datasets.
The spike train data are first discretized into exclusive

time intervals (bins). Typically, the bin length consists of a
few milliseconds, which at the same time defines the al-
lowed temporal imprecision of neuronal coordination. The
procedure of discretization counts the number of spikes
within each bin (binning, Grün et al., 2002a; Torre et al.,
2013), followed by reducing the bin content to 1 if a
bin contains .1 spike (clipping). In the following, we will
call the combination of these two steps binarization.
Candidate spatiotemporal patterns are then mined using
the FIM algorithm (Zaki, 2004; Borgelt, 2012; Picado-
Muiño et al., 2013), which yields the number of occur-
rences of each nontrivial detected spike pattern, along
with its occurrence times. A nontrivial pattern is defined
as one that, repeats at least a fixed number of times but
cannot be explained as part of a larger pattern. Pattern
counts are then collected in the so-called pattern

Research Article: Methods/New Tools 4 of 20

May/June 2022, 9(3) ENEURO.0505-21.2022 eNeuro.org



spectrum, i.e., the pattern counts are entered in a 3d-his-
togram according to their number of spikes z, the number
of pattern repetitions c, and the temporal extent from first
to last spike d (Fig. 2). The triplet (z, c, d) is called the sig-
nature of the pattern. Thus, for example, a pattern com-
posed of four spikes of four different neurons, occurring
29 times, with a duration of 10 bins (50ms) has a signature
of z=4, c=29, d=10. Other patterns with identical signa-
ture are counted in one entry. Thus, each pattern enters in
a particular entry of the 3d pattern spectrum.
This pooling of the patterns found by FIM according to

their signature is a crucial step for significance testing
because it avoids testing each pattern individually, but
rather considers the probability of generating a pattern
with a given signature. This reduces enormously the
number of tests to be considered in the multiple testing
correction.
FIM efficiently collects and counts pattern candidates,

nonetheless, the statistical significance of each of the
mined patterns has still to be evaluated. SPADE aims at
testing whether the patterns emerge as an effect of precisely
timed neuronal coordination, or merely by random spike
generation governed by the firing rates. In this sense, the
null-hypothesis is that spike trains are mutually independent
given their firing rate (co-)modulations and that the occurring
patterns in the data are given by chance.

For the significance evaluation of the patterns found in
the original data (Fig. 2, upper branch), we make use of
surrogate data (Fig. 2, lower branch of the workflow). A
surrogate is generated from the original data by, e.g., UD.
Then, surrogate data are analyzed in the same way as the
original data (binning, clipping, FIM, pattern counts), and
the counts are entered in the pattern spectrum. After, e.g.,
5000 surrogates, a 3d-p-value spectrum is computed by
binarizing each pattern spectrum to 0/1 entries, using par-
tial ordering with respect to size and occurrences to ob-
tain a cumulative distribution (Torre et al., 2013), and then
averaging over the surrogate realizations. The p-value of
signature (z, c, d) is the corresponding entry of the p-value
spectrum. Finally, the p-value spectrum is used in the
Benjamini–Hochberg procedure to correct for multiple
testing (Benjamini and Hochberg, 1995), where the num-
ber of tests is the number of occupied signatures (z, c, d)
where (z, c11, d) is not occupied.
The pattern counts found in the original data (Fig. 2,

upper branch) are evaluated by assigning to each entry
(signature) of the pattern spectrum the corresponding
entry of the p-value spectrum (pattern spectrum filtering;
PSF). See also section Consequences of spike count re-
duction on significance for the separation of significant
and nonsignificant bins. We apply a significance level a =
0.05. If a pattern signature is assigned a p-value � a, the

Figure 2. Workflow of the SPADE analysis. The top branch of the SPADE workflow shows the sequence of analysis steps of the
original data until the pattern spectrum is derived. The bottom branch of the workflow starts with the generation of the surrogate
data from the original data, followed by the same analysis steps as for the original data. The multiple overlapping panels in the
lower branch indicate that this surrogate procedure is repeated many times, by which the p-value spectrum is built up. This then
serves for the extraction of significant patterns through PSF. After the application of the pattern set reduction, significant STPs are
provided as a result. “Surrogate method 2” indicates that the part “Destroy correlation” and “surrogate data” are replaced by anoth-
er surrogate method, but the other steps stay the same.
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corresponding patterns are considered potentially signifi-
cant. These are further filtered by the pattern set reduction
(PSR; Torre et al., 2013), which consists of conditional
tests of each pattern given any other pattern surviving the
PSF, to remove spurious FPs resulting as a by-product of
the overlap of significant patterns and chance spikes. With
this procedure, the number of significant patterns can be
larger than the number of significant tests, because each
significant signature may contain several patterns.
Finally, as a result of the explained steps, SPADE out-

puts significant STPs, together with their number of oc-
currences, the involved neurons, the lags between the
pattern spikes, and the times of pattern occurrences.
When analyzing large-size experimental data, the FIM

search for all possible patterns can result in obtaining mil-
lions, if not billions, of putative patterns (Porrmann et al.,
2021). To reduce computation time, which is particularly
relevant for large datasets, we require a minimum occur-
rence count minocc of each pattern size to be further con-
sidered after the frequent mining step. This parameter
results as a rough estimate of the number of patterns ex-
pected by chance assuming independent stationary
Poisson processes each with the average rate of each of
the spike trains (Stella et al., 2019). Patterns with a lower
number of occurrences are considered as spurious as
they would be rejected anyway by the following statisti-
cal test. In addition, we fix the minimum number of oc-
currences of a pattern to be at least 10, i.e., 30% of the
number of trials of the considered experimental data
(see next section). The FIM output is then aggregated

for the PSF and the pattern set reduction (Torre et al.,
2013).

Experimental data and preprocessing
We make use of experimental data in two respects: (1)

we simulate data to test for FPs, and therefore extract sta-
tistical features of the experimental data to be included in
the artificial data; (2) we analyze the experimental data for
spike correlation by using the various surrogates. The ex-
perimental data were recorded during a reaching-and-
grasping task from the pre-/motor cortex of two macaque
monkeys, one female (monkey L) and one male (monkey
N). Both monkeys were chronically implanted with a 100-
electrode Utah array (Blackrock Microsystems). The ex-
perimental protocol is schematized in Figure 3A and was
also published previously (Riehle et al., 2013; Brochier et
al., 2018; Riehle et al., 2018). Monkeys N and L were
trained to self-initiate a trial by pressing a start button
(registered as trial start; TS). Then, after a fixed time of
400ms, a visual signal (yellow LED) was shown, to attract
the attention of the monkey (waiting signal; WS). After an-
other 400-ms-long waiting period, a first visual cue (two
LEDs on) was presented to the monkey for a period of
300ms (from CUE-ON to CUE-OFF) indicating the grip
type: full-hand side grip (SG) or two-fingers precision grip
(PG). Followed by another waiting period of 1000ms, the
GO-signal was presented, containing also the information
of the expected grip force (high, HF, or low, LF, by LEDs).
The behavioral conditions were selected in a randomized

Figure 3. Experimental protocol and data preprocessing. A, The trial start (TS) is self-initiated by the monkey. A waiting signal (WS-
ON) prepares the monkey for the visual cue presented at CUE-ON, providing the grip type instruction (PG/SG). After 1000ms, a sec-
ond visual cue (GO-ON) is presented to the monkey, specifying the force needed to pull the object (HF or LF) and the GO signal.
The switch release (SR) marks the beginning of the movement. The monkey touches the object and maintains the grip for 500ms
until the reward (RW-ON). The timing of the behavioral events SR and RW are variable and depend on reaction time and movement
speed. B, The panel shows the simultaneous spiking activity of all neurons (y-axis) over time (x-axis) for one example trial (first suc-
cessful trial of session i140703-001) of trial type PGHF. Each dot indicates one spike. The trials are aligned to TS (TS-ON). The six
colors rectangles represent the position of the six trial epochs (see legend).
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fashion. The start of the movement of the monkey was re-
corded as the release of a switch (SR). Subsequently, the
object touch (OT) and the beginning of the holding period
(HS) are indicated. After 500ms of holding the object in
place, a reward (RW) was given to the monkey and the
trial finished.
The experimental datasets considered here consist of

two sessions (i140703-001 and l101210-001) of 15min
electrophysiological recordings containing around 35 tri-
als per trial type, i.e., combinations of grip and force type.
Each session is spike sorted using the Plexon Offline Spike
Sorter (version 3.3). The spike data were extracted and are
available on https://gin.g-node.org/INT/multielectrode_grasp.
We only consider neurons satisfying the following con-

straints: SNR.2.5 (signal-to-noise ratio of spike shapes),
average firing rate across trials ,70 Hz. Hypersynchronous
(artifact) spikes across electrodes arising at the sampling re-
solution are detected automatically, classified as artifacts,
and removed as in Torre et al. (2016a). Only successful trials
are retained. The two experimental sessions are analyzed
separately. To perform a quasi time-resolved analysis, the
trials are segmented into six 500ms-long epochs that partly
overlap and cover the entire trial. This procedure enables us
to relate the data to the behavioral context (as in Torre et al.,
2016a; and represented in Fig. 3B). Segments of the same
epochs in the same trial type are concatenated and yield 24
(four trial types� six epochs) datasets per session, that are
analyzed separately.

Artificial nonstationary data
The simulated artificial datasets consist of nonstation-

ary spike trains generated as two different point process
models [Poisson process with dead-time (PPD); Deger et
al., 2012, and as a Gamma process], each with similar sin-
gle spike-train features as the experimental data but with-
out precise time correlations. The particular point process
models are chosen to account for the dead-time and reg-
ularity of the data. We generate as many spike trains as in
the experimental data using the original firing rate profiles
of the individual neurons. These are estimated with an
optimized kernel density estimation as designed in
Shinomoto (2010) and Shimazaki and Shinomoto (2010)
on a single trial-by-trial basis.
Since the time-varying firing rates are an important

property of experimental data which has to be considered
in the “null-hypothesis”, we generate nonstationary spike
data with the required ISI regularities. The PPD is a varia-
tion of the classical Poisson process wherein no spike is
generated within an interval to the previous spike smaller
than the dead-time d. The Gamma process has a shape
parameter g which is related to the intrinsic regularity/ir-
regularity of the spike train (Nawrot et al., 2008). If g . 1,
the process is regular (i.e., CV, 1); if instead g = 1, it co-
incides with the classical Poisson process with an expo-
nential ISI distribution. We do not consider Gamma
processes with g , 1 (CV. 1), i.e., bursty spike trains be-
cause our experimental data did not contain such cases.
For the PPD data, we estimate the dead-time for each

neuron and each combination of epoch and trial type sep-
arately by taking their minimum ISI. The nonstationary

profile is obtained by the so-called “thinning” method.
Specifically, the method first creates a PPD process of a
rate equal to the temporal maximum and then consists in
the rejection algorithm (of the single spikes) to simulate
the continuous varying firing rate (Lewis and Shedler,
1979; Cardanobile and Rotter, 2010). For the data mod-
eled as a Gamma process, we instead fix the shape factor
for each neuron and each combination of epoch and trial
type by estimating the CV of the process in operational
time (Nawrot et al., 2008) and then transform the CV into

the shape factor g ¼ 1

CV2, (van Vreeswijk, 2010). The pro-

cess is generated in operational time and then trans-
formed back into real time, thereby obtaining a
nonstationary process. We then evaluate the regularity
through the CV2 measure, which compensates for non-
stationary firing rates (Holt et al., 1996). The resulting CV2
distribution of all neurons of the data, simulated as
Gamma processes, is very close to the one of the experi-
mental data (Fig. 8A, third inset). Note that the Gamma
process does not have an absolute dead-time, however,
for g , 1, the process has a low probability of generating
small ISIs and can be regarded as containing a relative
dead-time (Nawrot et al., 2008). The resulting firing rates
of the artificial data are, for both generative models, close
to the ones of the experimental spike trains.
Each of the 24 datasets of the two experimental sessions

(above, in Experimental data and preprocessing) is modeled
using the two point processmodels PPD andGamma, result-
ing in a total of 2� 24� 2=96 artificial datasets.

Code accessibility
The code to perform and reproduce the analyses pre-

sented in this study can be found at (https://github.com/
INM-6/SPADE_surrogates), along with the code to repro-
duce the figures contained in this paper, i.e., Figures 3B, 4–
10. Figures 1, 2, 3A are sketches created manually with
vector graphics editors. The experimental data (analyzed
in Results, Application to experimental data), can be found
at https://gin.g-node.org/INT/multielectrode_grasp. The
artificial data are generated from the experimental data with-
in the SPADE_surrogates repository (Extended Data 1). The
SPADE method and all implementations of the surrogate
techniques are included in the Elephant Python package
http://python-elephant.org. Regarding the computational
cost, several improvements have been made for the perform-
ance of both, SPADE and the surrogate implementations
(https://elephant.readthedocs.io/en/latest/release_notes.html;
Porrmann et al., 2021). Nonetheless, depending on the
size of the dataset and the number of surrogates em-
ployed, large analyses can still take up to several hours on a
computer cluster.

Results
Statistical comparison of surrogate methods
To get a better understanding of the effects of the surro-

gate methods on the statistical features of the spike
trains, we first perform a comparison on stationary data.
For this purpose, we simulate point process models with
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well-defined properties: a Poisson process as a reference,
a PPD, and a Gamma process. The latter two are chosen
to mimic the ISI distributions of the experimental data
(Fig. 5B). Here, the processes are stationary to exclude
further statistical aspects. We explore the effect of all six
surrogate methods on the statistical properties of the sta-
tionary data (“original data”) for each neuron, each epoch,
and trial type. The parameters of the data models are ad-
justed to be close to the experimental data and thus ena-
ble the discussion of the potential transfer to experimental
data analyzed later (in Application to experimental data).
Artificial data with nonstationary firing rates are analyzed
in a later section (Performance of surrogate methods on
nonstationary data).
Figure 4 summarizes the results on stationary, inde-

pendent data. The columns refer to the different spike
train models (Poisson, PPD, and Gamma, from left to
right, respectively) and in Figure 4A the ISI distributions, in
Figure 4B the cross-correlations between the artificial and

the surrogate data, and in Figure 4C the auto-correlation
of the artificial and the respective surrogate data for
comparison. The fourth column displays a comparison
of the CV of the artificial versus the surrogate data, the
effectiveness of the displacement of the spikes through
the surrogates, and the change of a rate step through
the surrogate (from top to bottom).

ISI distribution
The ISI distributions (shown for l = 60Hz; Fig. 4A) indi-

cate for all surrogate data an exponential decay, lower for
short ISIs for JISI-D, ISI-D, and UDD. Moreover, for
Poisson data, and in particular at high rates, the ISIs are
often short. For the PPD process, UD dithers many spikes
into the interval of up to 5ms (see inset), corresponding to
the bin width. The other surrogates, which preserve the
dead-time, follow more closely the original ISI distribution.
On the other hand, a Gamma process does not contain a
strict dead-time but has a preferred ISI defined by the

E

F

D

C

B

A

Figure 4. Overview of surrogate statistics. A, The ISI distributions of original and surrogate spike trains (UD: orange, UDD: green,
JISI-D: pink, ISI-D: violet, TR-SHIFT: red, WIN-SHUFF: brown) are shown as a function of the time lag t in milliseconds (resolution
of 1ms). For each process, the corresponding spike trains have a firing rate of 60Hz and an average spike count of 500,000 spikes.
The ISI region smaller than 5ms is shown in an inset at the upper right corner. B, The panel shows the cross-correlation between
the stationary spike train model (Poisson, PPD, and Gamma, in left, middle, and right column, respectively) with each of the surro-
gates (same color code as in A), blue is the correlation with the original spike train with itself (i.e., the auto-correlation) as reference.
C, Auto-correlation histograms are shown before (solid blue) and after surrogate generation (colored lines). For B, C, the x-axis
shows the time lag t between the reference spikes and the surrogate spikes (B) and the other spikes in the spike train (C). For pan-
els B, C, we use the same data as in panel A. In panels D–F, we only examine Gamma spike trains. D, The panel displays the relation
of the original CV (x-axis) against the CV of the surrogates (y-axis). Parameters are the same as in panels A–C (right), but we vary the
CV (CV ¼ 1=

ffiffiffiffi

g
p

) in steps of 0.05, ranging from 0.4 to 1.2 (l = 60Hz). E, The ratio of moved spikes (Nmoved) over the spike count N is
shown. We show it as a function of the firing rate from 10 to 100Hz in steps of 10Hz on the x-axis (g = 1.23). F, Conservation of the
rate profile of a Gamma spike train (g = 1.23) and its corresponding surrogates. The firing rate change is a step function, going from
10 to 80Hz (10,000 realizations, spike train duration of 150ms), and is computed as a PSTH with a bin size of 1ms.
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order of the process if g . 1 (here g = 1.23). The ISI distri-
butions (Fig. 4A, right) are most changed for UD and UDD,
whereas the other methods maintain the ISI distribution at
small ISIs almost identical to the original one.

Similarity of artificial model and surrogate data
As a second step, we study the similarity for each of the

three artificial datasets to their six surrogate datasets by
generating cross-correlations between them. For the
Poisson process (Fig. 4B, left), the different surrogates
seem to generate again a Poisson-like process, since all
surrogates move spikes around the original spike posi-
tions: uniformly within the dither window for UD or TR-
SHIFT, or in a triangular fashion for WIN-SHUFF with a
high probability around zero and an exponential-like

decay for JISI-D, ISI-D, and UDD up to the dither window
of 25ms. In the case of JISI-D, ISI-D, and UDD, the dither-
ing is limited by construction to the interval between the
preceding and the following spike. Thus, for Poisson data,
and in particular at high rates, the available dither window
may not even be used completely, but only within the time
interval between the two limiting spikes. Therefore, spikes
are on average less moved and stay relatively close to
their former positions (Fig. 4E).
For the case of PPD, the distribution of the spike shift

from its original position (Fig. 4B, middle) is similar to the
Poisson process case (left), but the probability that spikes
stay close to their original position is slightly reduced
(e.g., pink and dashed violet and green have a lower peak
close to the center). Finally, for the Gamma process,
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Figure 5. Modification of spike trains because of binarization. A, Spike count reduction resulting from binarization and UD surrogate
generation. Results from the analysis of two experimental datasets (sessions i140703-001 and l101210-001) in the movement
epoch of the trial type PGHF of monkeys N (left) and L (right). Top panel, Spike count decrease as a function of the average firing
rate. Blue crosses indicate the spike count reduction caused only by binarization of the original spike trains (one cross per neuron).
Orange marks show the spike count reduction after surrogate generation by UD and binarization. The spike count reduction is nor-
malized by the spike counts of the original continuous-time spike train. Orange bars indicate the SD of the spike count reduction
calculated across 100 surrogates. Bottom panel: residuals (gray) computed as the spike count difference between the original binar-
ized spike trains (blue) and the UD binarized surrogates (orange), normalized as in the top panel. B, C, Interval statistics of the data.
B shows the ISI distribution of two neurons from monkey N (left) and two neurons of monkey L (right; in blue). Neurons represented
are 7.1 and 16.1 for monkey N, 5.1 and 6.1 for monkey L, with channel-id.unit-id notation. In gray are the ISIs of the respective UD
surrogate distributions with the mean (dark gray) and the SD of 500 surrogates in light gray. The bin size of the binning (here, 5ms)
is shown by the dashed dark blue line. In C, the CV2 distributions are shown for all neurons in each of the datasets (C, left subpa-
nel). C, Right subpanels, Respective minimal ISI from the ISI distributions of all neurons. The dead-times assigned by the spike sort-
ing algorithm are indicated by the dotted gray line (1.2ms for monkey N and 1.6ms for monkey L).

Research Article: Methods/New Tools 9 of 20

May/June 2022, 9(3) ENEURO.0505-21.2022 eNeuro.org



spikes are shifted into short ISIs, but to a lesser degree for
WIN-SHUFF. Thus, the shift of the surrogate spikes from
the original data (Fig. 4B, right) is similar in Poisson and
PPD models.

Auto-correlation
We examine the auto-correlations of the artificial proc-

esses and the versions modified by the surrogates to
understand how ISI features are affected. For the Poisson
process, the auto-correlations (Fig. 4C, left) for UD, TR-
SHIFT, and WIN-SHUFF are flat except for the center
peak, whereas JISI-D, ISI-D, and UDD show a decreased
probability for very small ISIs, and then an increase up to
the maximum dither width D = 25ms with a peak above
baseline. The reason for this difference is the limitation
that spikes may not be exchanged in their order, as for the
other methods. For example, if the reference spike is
close to the following spike and further away from the pre-
ceding one, it will be more likely displaced backward in
time than forward. This is also slightly visible in a differ-
ence of the ISI distributions (Fig. 4A, left), compared with
the other methods. Moreover, the increase toward D
above baseline is because of the shift of dither probability
to higher time intervals. When looking at the PPD process,
we notice instead that for JISI-D, ISI-D, and UDD, the
auto-correlations show, as compared with the corre-
sponding surrogates of the Poisson process, also re-
duced short ISIs, but to a lesser extent. UD moves spikes
into small ISIs, but on a smaller scale than the Poisson
process (Fig. 4A, left and middle, orange), and therefore
shows a reduced probability when two spikes have a time
difference of less than twice the dither parameter (here
50ms). Finally, in the Gamma process, we have seen that
the ISI distribution is maintained at small ISIs almost iden-
tical to the original one. Similarly, for the auto-correlations
(Fig. 4D, right): TR-SHIFT is identical to the original pro-
cess; JISI-D and ISI-D are mostly preserving the auto-cor-
relations, but still have a small bump above baseline at
around D because of the dither restriction not to dither be-
yond the former and the next spike. WIN-SHUFF has a
sharp reduction of spikes after the reference spike, and
UD has a dip around 0.

Coefficient of variation of ISIs
We learned that the ISI distributions are affected by

most of the surrogates. Figure 4D illustrates how the CV
of the surrogates differs in contrast to the original Gamma
process (rate fixed to 60Hz), where the CV ranges from
0.4 to 1.2 in steps of 0.05. Nonpreservation of the CV in
the surrogate data as compared with the original data can
be a potential source of FPs, in particular for very small
CVs or CVs. 1 (Pipa et al., 2013). To facilitate the com-
parison, we also show the diagonal (blue). UD changes
the CV the most, from the original 0.4–0.75, i.e., losing
strongly its high regularity, and increases even more, with
a low slope, to a maximum slightly over 1.0 for the original
CV of 1.25, so here burstiness is reduced. WIN-SHUFF
and UDD behave similarly to UD, but for CV=0.4 of the
original data, these surrogates have a lower CV than UD
(Fig. 4D, orange, green, and brown lines above all others);
moreover, UDD stays below UD for all CVs. WIN-SHUFF

has a slightly higher slope and reaches a maximum still
below the one of the Gamma process.
JISI-D, ISI-D, and TR-SHIFT start with identical CVs as

Gamma, and TR-SHIFT keeps the same CV as the CV of
the Gamma process for all CVs. However, JISI-D and ISI-
D have a lower slope than the Gamma process, but still,
reach high values;0.05 less than the highest CV at 1.25.
In summary, although the ISI distributions seem not to

be strongly affected, the effect on the CVs can be very
strong. For UD, UDD, and WIN-SHUFF, the CV slightly
changes (in both directions), and for JISI-D and ISI-D, the
CV decreases. A strong change in the CV of the surro-
gates can lead to FPs (Pipa et al., 2013). The CV is un-
changed only for TR-SHIFT.

Ratio of moved spikes
Next, we study whether spikes are moved from their

original bin in their surrogate realization. The reason for
this interest is that if spikes are not sufficiently moved,
correlations are not destroyed as intended, and thus may
lead to false negatives. Therefore, we measure the ratio of
the number of spikes that are displaced from their original
bin position relative to the total number of spikes. We gen-
erate stationary data and its surrogate data and vary the
firing rate (from 10 to 100Hz in steps of 10Hz; Fig. 4E). If
two spikes exchange their bin positions, they are both
considered as not moved. The spike ratio is also shown
as a reference for two independent realizations of a
Gamma spike train (g = 1.23, blue line).
With increasing firing rates, the ratio of moved spikes

decreases for the surrogates. Ideally, the surrogates
should be similar to the effect attained on the original pro-
cess, i.e., the colored lines in Figure 4E should be as
close as possible to the blue line. However, none of the
surrogate techniques meets this ideal setting, and there
are constantly 10% fewer spikes moved as compared
with the blue line, i.e., the ratio of moved spikes for two in-
dependent spike train realizations. Nonetheless, we ob-
serve for all surrogates that the ratio of moved spikes
decreases with increasing firing rates, which corresponds
to the fact that increasingly more bins are already occu-
pied, and thus the resulting binned surrogate spike train is
more similar to the binned original. UDD, ISI-D, and JISI-D
displace fewer spikes, in particular for higher firing rates
as compared with UD, TR-SHIFT, and WIN-SHUFF. The
fewer the spikes that are not effectively displaced, the
higher the peak at zero-delay of the cross-correlation of
the stationary and the surrogate data (Fig. 4B). Almost
50% of JISI-D, ISI-D, and UDD are not moved at 100Hz,
and, for lower rates, they remain below the ratios of WIN-
SHUFF, UD, and TR-SHIFT. As a consequence, we can
expect that JISI-D, ISI-D, and UDD, in general, tend to
yield more false negatives than WIN-SHUFF, UD, and TR-
SHIFT.

Rate change in surrogates
Changes in the firing rate profile of the surrogates com-

pared with the original data may be a source for FPs
(Grün, 2009). An optimal surrogate method should follow
as closely as possible the original firing rate profile.
Therefore, we test here an extreme case where the
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original data have a rate step (as in Louis et al., 2010a),
jumping from 10 to 80Hz (Fig. 4F). We observe that for all
surrogates but WIN-SHUFF the firing rate step is con-
verted into a linear increase, which starts at 25ms (dither
parameter D) before the step and ends at 25ms after the
rate step. This behavior has already been derived analyti-
cally and observed in Louis et al. (2010a) for UD: it corre-
sponds to the convolution of the original firing rate profile
with the dither (boxcar) function. WIN-SHUFF introduces
a second step in the firing rate profile as it generates a lo-
cally-stationary firing rate within the shuffling window
(here 50ms). We conclude that all surrogate techniques
smooth the original firing rate profile, whereas WIN-
SHUFF creates an additional intermediate rate step. Thus,
for steep increases in the firing rate profiles, we have to
expect the occurrence of FP patterns because of this
smoothing.

Summary of the effects on the spike-train statistics of
surrogates
We explored different aspects of the statistics of the

surrogate spike data as compared with its original pro-
cess. In general, surrogate data are not identical to the
original data but change to a different degree. The effects
for the three data models are summarized and not differ-
entiated, since they are similar. These are listed in Table
1. Features that are preserved are indicated by “yes,” ap-
proximately preserved (“approx.”), and not preserved
(“no”).

Impact on spike counts after spike train binarization
A typical step in the analysis of experimental spike data

is to downsample them to the time-scale of relevance,
e.g., millisecond resolution. This is typically done by bin-
ning the continuous spike trains to bins of a few millisec-
onds width, resulting in spike counts per bin. In further
analysis steps, these data often have to be reduced to 0–
1 sequences (e.g., as described for the SPADE method in
Materials and Methods), thus the bin contents are re-
duced to 1 if one or more spikes are in a bin (“clipping”),
or to 0 for no spike. Thus, we now explore whether and
how the binarization step affects surrogate data. For
doing so, we compare the spike counts per neuron before
and after the binarization step, for both the experimental
and the surrogate data. We notice that for some neurons
the total spike counts of the UD surrogates are much
lower than those of the original data. Further analysis of
this aspect shows that the higher the firing rate of a neu-
ron the larger the spike count reduction and thus the

corresponding mismatch. Figure 5A shows that for two
different datasets, each from a different monkey, we find
a spike count mismatch of up to 10% between the UD
surrogates and the original data (Fig. 5A, bottom, gray).
Such a difference in the spike count is troublesome, since
it is expected to lead to a reduced pattern count in the
surrogates as compared with the original data and, thus,
is expected to yield an overestimation of the significance
of patterns.

Origin of spike count reduction
The UD procedure as such does not delete any spikes,

only the binarization step does. In this regard, the latter
step is crucial: when applied to the original and the surro-
gate data, it leads to different spike counts. Here, we aim
to understand why this is the case. One potential reason
is the change of the ISI statistics of the spike trains with
and without dithering, as already analyzed for stationary
spike models described above, (in ISI distribution). Figure 5B,
shows the ISI distribution for two example neurons of the
experimental data (in blue; right for monkey N, left for
monkey L) and for comparison, the ISI distributions of the
uniform dithered surrogates (gray). In the experimental
data, the ISI distribution is peaked at a certain ISI, here
between 5 and 10ms, but the in ISI distributions of the
surrogate data are decaying exponentially, and thus also
fill small ISIs. This indicates the fact that the original spike
trains are more regular than the surrogates and so small
ISIs have a lower probability. The regularity of the experi-
mental data is confirmed by the measurements of the
CV2. Indeed, the CV2 distribution of all neurons of both
two datasets (Fig. 5C, left subpanels, in both columns) is
rather below 1, i.e., more regular than Poisson.
In addition, the distributions of the minimal ISI of each

neuron per dataset (Fig. 5C, right subpanels of the two
columns) exhibit a minimal ISI of 1.3ms for monkey N and
1.6ms for monkey L. This corresponds to the dead-times
of the spike sorting algorithm that cannot resolve overlap-
ping spikes. The different dead-times for the two mon-
keys are because of a different number of sample data
points considered for spike sorting (Brochier et al., 2018).
The corresponding ISI distributions of the surrogate data
(Fig. 5B) show that there are ISIs smaller than the mini-
mum ISI of the respective experimental data. Thus, the
dithering procedure generates shorter ISIs in the UD sur-
rogates than in the original data.
To verify our interpretation that the combination of UD

and binarization causes the spike count reduction, we
perform a similar analysis on artificial data, i.e., simulated

Table 1: Summary of the conservation of the statistical properties of the six surrogate techniques

Feature/method UD UDD ISI-D JISI-D TR-SHIFT WIN-SHUFF
ISI No No Approx. Approx. Yes Approx.
Dead-time No Yes Yes Yes Yes No
Auto-correlation No No No No Yes Approx.
Firing rate modulation Approx. Approx. Approx. Approx. Approx. Approx.
Spike train regularity (CV, 1; regular) No No Approx. Approx. Yes No
Spike train regularity (CV. 1; bursty) No No Approx. Approx. Yes Approx.

The degree of conservation is marked as yes/approx./no. The dead-time conservation is evaluated based only on the results of the PPD process, otherwise on
the results for all data models (Poisson, PPD, Gamma).
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PPD and Gamma spike trains. For simplicity, we now
choose both of a constant rate but adapt the dead-times
or shape factors, respectively, to account for the ISI fea-
tures of the experimental data.
Figure 6C shows the spike count reduction (expressed

as 1 – Nclip/N, where Nclip is the number of clipped spikes
and N the total number of spikes) that results after binning
(5ms) of the PPD (left) and Gamma process (right) with
(dashed) and without (solid) application of UD. The re-
spective analytical derivation can be found in Stella et al.
(2021). The graphs show the spike count reduction as a
function of the firing rate of the processes. The PPD
model shows a higher spike loss the higher the firing rate,
and a lower spike reduction for larger dead-times. The
uniformly dithered PPD show for all dead-times an in-
crease in the spike reduction with higher firing rates, but
to a larger extent than for the original PPD processes. The
Gamma process (right) for g . 1 shows a similar result as
for the PPD: an increase of spike count reduction for in-
creasing firing rates, and the larger the shape factor, the
lower the spike count reduction. The increase is rather
parabolical compared with the PPD. The Poisson process

(light gray, g = 1) shows a much larger and linear increase
of spike reduction with rate, more strongly than for
Gamma processes with g . 1 (darker grays).
Thus, (1) why does a Poisson-like process lose more

spikes through binarization than a process with a non ex-
ponential ISI distribution, and (2) why does UD lead to a
loss of spikes compared with the original experimental
data? As shown above (Fig. 5B), UD generates a more
Poisson-like ISI distribution. Such processes contain
spikes that follow each other in short intervals, which in
turn would lead to more than one spike in a bin. The
following clipping then reduces the spikes to 1 (for illus-
tration, see Fig. 6A). A PPD process has a strict dead-time
which prevents such small intervals between the spikes, thus
fewer spikes are discarded in the binarization procedure.
The closer the duration of the dead-time to the bin size, the
more unlikely is that two spikes are dithered into the same
bin, and the loss of spikes is reduced.

Spike count reduction in different spike train models
Figure 6C illustrates the spike count reduction for all

types of surrogates applied to the three different spike

Figure 6. Origin of spike count reduction. A, The sketch shows how a regular spike train is binarized. Below, illustration of how UD
may change the spike times such that multiple spikes end up in single bins. The resulting binarized surrogate spike data are shown
at the bottom. In contrast, because of the regular ISIs of the original process, its binned data are hardly losing spikes in comparison
to the dithered version. B, Analytical derivation of spike count reduction (after binning in 5-ms intervals and clipping) for renewal
point process models (PPD, left and Gamma process, right; solid lines, respectively), each with four different parameter sets (PPD:
d ¼ 1:5;2:0;2:5;3:0ms, Gamma: g ¼ 1;1:5;2;2:5, different gray shades). The dashed lines show the same quantity for their UD sur-
rogates. The firing rate of the processes is also varied and shown along the x-axis. The spike count reduction is shown on the y-
axis, expressed as 1 – Nclip/N, where Nclip is the number of clipped spikes and N is the total number of spikes. C, Spike count re-
duction of artificially generated spike train data of Figure 4 after binarization (bin width of 5ms) together with the corresponding sur-
rogates in different colors. The firing rate is constant for each spike train and varies across realizations from 10 to 100Hz in steps of
10Hz (along the x-axis). The spike train durations are fixed such that, given the firing rate, all spike trains have an expected spike
count of 10,000 spikes.
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train models described above: the higher the rate the
more spikes are lost. However, there are some differences
in the degree of spike loss for different data models,
which we now discuss separately.
For Poisson data, the spike count loss increases ap-

proximately linearly with the firing rate for all surrogates.
This happens as well for the Poisson process (blue), up to
20% for a rate of 100Hz. Only JISI-D, ISI-D, and UDD
overall have a slightly lower loss. In the case of the PPD
process, the loss of spikes (Fig. 6C, middle) is consid-
erably reduced as compared with the other models.
This is true also for its surrogates, besides UD (or-
ange), which loses more spikes. This may be explained
by the ISI distributions that we observed in Figure 4A
UD dithers many spikes into the interval of up to 5ms
(see inset), corresponding to the bin width. For the
Gamma process, the spike loss for the different surro-
gates (Fig. 6C, right) is higher than for PPD but lower
than for Poisson. UD loses the most, JISI-D and ISI-D
the least. One method (WIN-SHUFF) preserves the
spike count from the original spike train by construc-
tion. For TR-SHIFT, the differences in spike count are
negligible.
As UD surrogates evidence a strong spike count re-

duction in the context of binarization, we expect UD to
yield a large number of FPs in the SPADE PSF test.
Further, UDD surrogates might lead to FPs in the case

of regular data that do not exhibit a dead-time (e.g.,
Gamma spike trains). The study of the similarity of the
surrogates to the original processes shows that JISI-
D, ISI-D, and UDD might lead to fewer patterns
detected, i.e., an underestimation of significance.
Moreover, we expect FPs for WIN-SHUFF surrogates
when the original firing rate profiles have a steep rate
increase. The technique preserving the most statistics
without showing any disadvantages is TR-SHIFT.

Consequences of spike count reduction on significance
Above we have shown that by UD we get a loss of spike

counts because of the binarization. Now we show how
this spike loss leads to a reduced expected number of
spike patterns and thus to FPs. For doing that we create
20 times the p-value spectrum for a dataset containing 20
independent, stationary PPD spike trains and average
over the obtained p-value spectra, once derived by UD
(Fig. 7, top panel) and also by TR-SHIFT (Fig. 7, bottom
panel). Figure 7 shows a cut through the 3d-p-value spec-
trum for the mined patterns of size 3, for different pattern
occurrences (x-axis), and different durations (y-axis). The
p-value spectra show that the p-values change from high
values for low number of occurrences to low values for
higher number of occurrences (from left to right, color-
coded accorded to the color-bar on the right). The blue
lines indicate in each of them the isoline of the signifi-
cance threshold of a = 5%, and the threshold corrected
for multiple testing in orange. The blue staircase-like line
is always to the left of the orange staircase-like line ap-
proximately with a difference of three occurrences. We
observe that the two lines are far more to the right for TR-
SHIFT (approximately by two occurrences) than for UD.
Thus, for UD fewer pattern occurrences are needed to
classify a pattern as significant than for TR-SHIFT, e.g.,
for a duration of d=4, 25 occurrences are needed for UD
(top) in contrast to 28 for TR-SHIFT (bottom). Or in other
words, if the surrogates lead to a loss of spikes as for UD,
the number of patterns required to become significant is
lower. This also may lead to an increase of FPs through
UD. We also did this analysis for the other four surrogate
methods and could observe that they all behave similarly
to TR-SHIFT (not shown here).
From the analyses performed here, we conclude that

UD is not an appropriate surrogate method for spike data
that either contain a hard dead-time or have a regular
spiking behavior, as motor cortex data tend to have
(Mochizuki et al., 2016). Therefore, we now deepen our
evaluation of surrogate methods described above by ana-
lyzing the impact of these on the SPADE analysis.
However, before we move on, a note of caution con-

cerning the use of the terms “false positives” and “false
negatives” may be necessary: in the experimental data
we do not have an independent “ground truth” telling us
which patterns are the “real” ones. Thus, in principle, one
cannot speak of false positives or false negatives, one
can only speak about underestimation or overestimation
of significance probabilities. However, we still use the
term “false positive” to be compatible with the experimen-
tal literature we are relating to. In the artificial data, we can
only generate data from a null-hypothesis, where patterns

Figure 7. Consequences of spike count reduction on the p-
value spectrum. The p-value spectra of stationary and inde-
pendent PPD processes, using UD surrogates in the top panel
and TR-SHIFT surrogates in the bottom panel. The p-value
spectra are shown for mined patterns of size 3 only for a range
of different pattern durations d (y-axis), and pattern counts (x-
axis). The p-values are expressed by colors ranging from dark
blue to light blue (see the color bar, identical for both spectra).
The bin size is 5ms. The results are from 20 realizations of
n=20 parallel, independent, two seconds long PPD spike trains
with parameters l = 60Hz, d=1.6ms. The p-value spectrum is
derived from 5000 surrogates, dither parameter D = 25ms.
Further, we cut the spike train into trials of 100ms for TR-
SHIFT. The blue line indicates the limit of a = 0.05, to the right
the p-values are below. The orange line shows the significance
threshold after multiple-testing correction.
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occur just by chance. Therefore, any patterns found to be
significant in these data are considered false positives,
and there can be no false negatives.

Performance of surrogate methods on nonstationary
data
Next, we apply the six surrogate techniques to artificial

datasets that are generated based on two experimental
datasets (Brochier et al., 2018) to study the effect of the
surrogate methods on the occurrence of FPs in the case
of nonstationary data (Louis et al., 2010a). The experimen-
tal data are two sets of recordings from ;100 parallel
spike trains from macaque monkey motor and premotor
cortex during performance of a reach-to-grasp behavior
(Riehle et al., 2013), explained in Materials and Methods,
Experimental data and preprocessing. In this analysis, we
account for firing rate changes by generating artificial
spike trains with the same firing rate profile of the experi-
mental data (thus nonstationary processes). The gener-
ated data thus reproduce from the experimental data both
single neuron and population response profiles. In addi-
tion, we use two nonstationary point processes which
model ISI, dead-time, and firing regularities of the experi-
mental data.
Thus, we simulate nonstationary artificial data with the

same firing rate profiles as the experimental data, and use
as point process models (1) the PPD to mimic the dead-
time of the data (because of spike sorting), and also (2)
Gamma processes to account for their CVs. Before we
show the results for the SPADE analysis of these artificial
independent data, we show for a dataset from a move-
ment epoch (PGHF) where the most firing rate changes
are observed, the similarity of the artificial data to the

experimental data. Figure 8A summarizes the features
such as firing rate modulation, ISI, CV2, and dead-time for
the experimental (blue), the PPD (orange), and the
Gamma process (green). Clearly, the artificial data are not
completely identical to the original data, but very close.
The firing rate modulation (left panel) is relatively well
kept, as well as the single unit ISI (second panel from left),
albeit the PPD and the Gamma data also include small
ISIs. The CVs of the data are relatively close in the mean,
although the experimental data still have a broader distri-
bution with lower values (third panel from left). The right
panel shows the distributions of the smallest intervals.
The original and the PPD are very similar with a clear
dead-time of 1.6ms, whereas for the Gamma process,
spikes occur also close to 0ms after another spike. These
small differences also need to be considered when com-
paring the SPADE analysis results from the artificial data
(Fig. 8B) and the experimental data (Fig. 10).

FP analysis on artificial nonstationary data
The artificial data analyzed here for FPs are generated in-

dependently and hence all observed spike patterns occur
by chance and are considered as FPs. The SPADE analysis
is performed on all datasets, and separately with each of the
six surrogate techniques. We set the bin size to 5ms, the
maximum pattern duration to 60ms, the significance level to
a = 0.05, and use 5000 surrogates. For all surrogate techni-
ques, we set the dither parameter to D = 25ms.
Figure 8B shows the number of patterns retrieved for

the PPD (left) and the Gamma datasets (right). For each
point process model, we show the total number of FPs of
all 96 datasets for each of the six surrogate methods.
Results show that we retrieve for all surrogate techniques
but UD a small number of FPs. For UD, we get for the PPD
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Figure 8. Evaluation and analysis of FPs across surrogate techniques for pattern detection with SPADE. A, Comparison of statistics
of the artificial data generated from experimental data to the experimental data. In blue, orange, and green we represent experimen-
tal, PPD, and Gamma data, respectively. Left graph, Average firing rate (PSTH smoothed) of a single unit (session: i140703-001,
epoch: movement, trial type: PGHF, channel_id: 21, unit_id: 1) across one epoch of 500ms across trials. Second from left, ISI distri-
bution of the same single unit during the same epoch. Third from left, Average CV2 estimated trial wise for all neurons of the ses-
sion. Fourth from left, Dead-time (minimum ISI) for all single neurons. B, Numbers of FPs across surrogate techniques (on x-axis,
color-coded) averaged over 48 (2 sessions� 6 epochs� 4 trial types) datasets, left for PPD and right for Gamma processes. The
numbers above/inside the bars represent the total number of FPs found in 48 datasets, typically one FP pattern per dataset.
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process in Figure 8B, left: UD (522) and for Gamma: UD
(302). For the rest of the surrogates, we get for PPD
around 14 FPs and for Gamma around 9, besides UDD (52).
The latter was expected from our observations described
above, (in Spike count reduction in different spike train mod-
els). Thus, concluding from these results, we expect in the
analysis of the experimental data to get a similar level of FPs
as shown here.
For further analyses, given these observations, we form

four groups of FP types depending on which surrogate
techniques they are expressed in. The first and predomi-
nant group are the FPs present only in the SPADE analysis
performed with UD surrogates, represented in orange in
Figures 8A and 9. Second, we group FPs present in all
surrogate techniques (in blue). Third, in the case of
Gamma data, we distinguish a subset of FPs found with
both UD and UDD surrogates (in green). Finally, we pool
all FPs present in any other combination of surrogate
analysis (in red). To get an understanding of the rate prop-
erties of neurons that contribute to the FPs, we consider
their average firing rates (over time and trials) and the

group that they belong to (Fig. 9A). In general, we find FPs
in all analyzed datasets, but four (monkey L, movement,
Gamma, all conditions). We observe that almost all neu-
rons involved in FPs have an average firing rate higher
than 20Hz. Neurons belonging to the first group (UD only)
are the largest set and are present for both monkeys, both
data models, and almost all datasets. The second group
(all) is present for both monkeys and models but is larger
for PPD. The third group (UD and UDD) is present for both
monkeys only for the Gamma model. This was already ex-
pected, given the higher spike count reduction, for UD
and UDD in the case of Gamma spike trains (see section
Spike count reduction in different spike train models). We
also inspect the CV2, averaged over trials, of units in-
volved in FPs (Fig. 9A). FPs occur in neurons with a rela-
tively low CV2 (0.7,CV2, 1), but this is not the case for
neurons with very low CV2s (CV2, 0.7; especially for
monkey N). Neurons with CV2. 1 are (almost) never in-
volved in FP patterns.
In summary, we observe that the surrogate technique

leading to most FPs is UD, followed by UDD (only in the
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Figure 9. Average Firing rate and CV2 of neurons participating in FP patterns against all neurons. A, Average firing rate of neurons
for each monkey (N at the top and L at the bottom), epoch (y-axis), and behavioral type (for each epoch ordered as PGHF, PGLF,
SGHF, SGLF). Left, PPD data. Right, Gamma data. Colored dots represent individual units involved in FPs: blue dots indicate the
average firing rate of units involved in FP patterns found for all surrogate techniques, orange dots for UD surrogates, green dots for
UD and UDD only, and red dots for other combinations of different surrogate techniques. Gray dots represent the average firing rate
of individual units not involved in any FP. B, Average CV2 of neurons for each monkey (N at the top and L at the bottom), same
structure as A.
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case of Gamma data). Neurons exhibiting an average fir-
ing rate higher than 20Hz, and having a CV2,1 are pre-
dominantly involved in FPs. Moreover, there is a small
amount of FPs detected using all other surrogate techniques,
which is expected given a certain significance threshold.
Nonetheless, regular and high-rate neurons are more prone
to raise the FP rate (Harrison and Geman, 2009).

Application to experimental data
As the last step, we apply SPADE with the six surrogate

techniques to the two sessions of experimental data intro-
duced in section Materials and Methods, Experimental
data and preprocessing. Here, our goal is to analyze with
SPADE experimental data, for which we do not know the
ground truth (i.e., the presence and amount of significant
patterns) and show the differences resulting from the ap-
plication of the surrogate techniques in the significance
testing. In Figure 10, we present the found number of sig-
nificant patterns for each epoch and trial type (different

colors). The results are shown for each monkey separately
since their data differ in terms of CV2, dead-time, and fir-
ing rates (Figs. 8, 9). The number of patterns across all da-
tasets (24) per monkey is UD (N:203, L:121), UDD (N:14,
L:14), JISI-D (N:10, L:10), ISI-D (N:10, L:10), TR-SHIFT
(N:7, L:14), WIN-SHUFF (N:11, L:11). Note, for compari-
son to Figure 8, one needs to add the numbers of the two
monkeys. Thus, we detect more patterns (almost double
the amount) in the analysis of experimental data than in
the nonstationary artificial data, except for UD (and UDD
on Gamma data).
A first observation is that the amount of significant pat-

terns found using UD is much higher (note different y-axis
scale) for both monkeys as compared with the other five
surrogate techniques. Patterns occur mostly during the
movement (mov) epoch where the firing rates are highest.
Thus, given the calibration results from the former section,
a large amount of those are likely FPs.
Taking from now on into consideration all surrogate

techniques but UD, for monkey N (Fig. 10, left column) we

Figure 10. Analysis of experimental data. SPADE results for two sessions of experimental data: session i140703-001 (left) and ses-
sion l101210-001 (right). Histograms represent the number of significant patterns detected by SPADE in each epoch (start, cue,
early-delay, late-delay, movement, and hold), color-coded according to the grip type [precision/SG (PG/SG) and low/high force (LF/
HF)]. Each row corresponds to one surrogate technique (note the different y-axis scale for UD).
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find patterns across all epochs, almost for all surrogates.
The pattern numbers are relatively similar within and
across epochs. Very specific are the pattern occurrences
during the movement epoch (Fig. 10, left column, pink). In
fact, the same pattern occurs for SGLF behavioral context
in all surrogates, but TR-SHIFT. During the start epoch, all
surrogates show patterns in relation to SGLF, but some
(UDD and TR-SHIFT) are also in relation to SGHF, and
others (JISI-D, ISI-D, and WIN-SHUFF) in relation to
PGHF. In the cue epoch, all surrogates find patterns in re-
lation to PGLF trials (Fig. 10, left column, light blue).
During early delay (earl-d) all surrogate techniques find
patterns for PGHF trials, in addition, for UDD, a pattern for
SGHF, and one in PGLF trials for WIN-SHUFF. During the
late waiting epoch (late-d) patterns occur only in PGHF
and PGLF trials (Fig. 10, left column, blue and light blue),
but we also observe patterns in SGHF trials for UDD (Fig.
10, left column, green, second row). Finally, during hold,
we find patterns in PGLF trials for all surrogate techni-
ques. In addition, we find a pattern in SGHF trials for UDD
and a pattern in PGHF trials for JISI-D, ISI-D, and WIN-
SHUFF.
For monkey L (Fig. 10, right column) most patterns

occur during the movement epoch for PGHF, PGLF, and
SGHF, however in slightly different combinations. During
the late phase of the waiting period (late-d) four out of the
five surrogates find the same patterns (one for SGLF and
one for SGHF). During the hold epoch only for UDD and
TR-SHIFT, we find the same patterns, one for PGHF
and one for PGLF. We do not detect any significant pat-
terns in the start, cue, and early delay epochs.
Interestingly, for both monkeys, the significant patterns

are specific to the epochs, i.e., identical patterns do not
repeat in different epochs, but the patterns are different in
the temporal delays of the spikes and are mostly com-
posed of different neurons. Previous studies on this ex-
periment (Riehle et al., 2018; Fig. 2) showed that monkey L
has on average a shorter reaction time than monkey N, and
has shorter and more pronounced rate increases within the
movement epoch. In contrast, monkey N shows patterns al-
ready in the start epoch, and the number of detected pat-
terns remains almost constant throughout epochs.

Discussion
The generation and use of surrogate data has become

an important methodological approach to data analysis
when the data are complex and there are no reasonable
simple hypotheses that can be used for the statistical eval-
uation. This holds in particular for complex experimental
data, i.e., massively parallel recordings during behavior and
which do not contain hundreds of trials because the mon-
keys do participate in the experiment only for a limited time.
Of course, it is still possible to use comparably simple

spike-train distributions as null-hypotheses to test for sig-
nificant repetitions of spatiotemporal spike patterns,
which will find more significant patterns with much less ef-
fort (Staude et al., 2010; Russo and Durstewitz, 2017).
However, there may be several potential reasons for a sig-
nificant deviation from such a simple null-hypothesis, in
particular when it assumes stationarity and does not

include the obvious effects of co-variation of neural firing
rates with the experimental condition or stimulus presen-
tation (Grün, 2009; Pipa et al., 2013; Elsayed and
Cunningham, 2017).
Generative statistical models for more complex null-hy-

potheses have occasionally been introduced in the litera-
ture, for example, to test the significance of experimental
findings that are presented as evidence for a more com-
plex, but still rate-based “population coding,” but may be
explained just by the first and second moments of the
vector of neural firing rates (Elsayed and Cunningham,
2017). Here, we are interested in spatiotemporal spike
patterns that cannot be explained by the rates at all, in-
cluding potential correlations of all orders. For this pur-
pose, the most reasonable procedures for generating
sufficiently complex null-hypotheses probably have to be
based on surrogate methods, in particular temporal dith-
ering or jittering.
In this study, we perform a comparison of six surrogate

techniques (Fig. 1) which are used in the analysis of paral-
lel spike trains: uniform dithering (UD), uniform dithering
with dead-time (UDD), window shuffling (WIN-SHUFF)
both newly introduced, joint inter-spike interval dithering
(JISI-D; Gerstein, 2004), inter-spike interval dithering
(modified from Gerstein, 2004), and trial shifting (Pipa et
al., 2008; Harrison and Geman, 2009). Such surrogate ap-
proaches have the goal of destroying the exact spike tim-
ing relations between neurons. We quantified which
statistical features of the experimental spike trains are
conserved in surrogates, by examining the ISI distribution,
the auto-correlation, the cross-correlation, the firing rate
modulations, the ratio of moved spikes, and the coefficient of
variation (Table 1). These were evaluated on stationary artifi-
cial data (Poisson, PPD, and Gamma spike trains) that con-
tained relevant features of the experimental data (dead-time
and regularity; Fig. 4). Additionally, we observed that UD
does not preserve the spike count when the spike trains are
binarized and which leads to a very strong spike count re-
duction for the PPD model, not for the Poisson model, and
less for the Gammamodel.
The issue of spike count reduction shown for UD on

stationary, independent data is particularly relevant, as it
might influence the statistical test result. Looking more in
detail into real experimental data, we have shown that the
usage of UD as a surrogate technique, followed by binar-
ization (binning and clipping) of the spike train, leads to a
mismatch in the spike counts between the experimental
and the surrogate data (Fig. 5). The spike count reduction
is worthy of attention and increases with the firing rate,
which we verified analytically and through simulations
(Figs. 4A, 6B). Moreover, we showed that two factors play
a major role in the spike count reduction: the neuronal
dead-time and the CV (Fig. 6B).
Evaluation of spatiotemporal patterns is a tricky prob-

lem and has been discussed controversially in the litera-
ture (Oram et al., 1999; Baker and Lemon, 2000; Segev,
2003; Kumar et al., 2010; Quaglio et al., 2018). When con-
sidering the problem in the context of the statistical evalu-
ation of spatiotemporal spike patterns using SPADE, we
observed that the spike reduction in the UD surrogates in
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combination with binarization of the spike data leads to
fewer pattern occurrences in the surrogate data com-
pared with the original data, which in turn may lead to an
overestimation of pattern significance in the original data
(Fig. 7). The ultimate consequence of this problem is the
occurrence of FPs. Fortunately, SPADE is a modular
method: different types of surrogates can be used, while
the mining algorithm and the testing steps stay identical.
For this reason, we were able to analyze the same data-
sets by using different surrogates, to compare the results.
Thus, using SPADE, we tested all six surrogate techni-

ques for FPs in nonstationary data. These were based on
two experimental sessions of the motor cortex of maca-
que monkeys involved in a reaching-and-grasping task
(Riehle et al., 2013; Brochier et al., 2018). We stress the
importance of generating test data that are very similar to
experimental data, to closely model all features that typi-
cally lead to complications when trying to implement the
null-hypothesis of conditional independence given the fir-
ing rates (Grün, 2009). The features that play a key role in
false significance estimation are the statistical properties
of the single-neuron spike train and of the population. In
particular, we account for firing rate increases or de-
creases by generating nonstationary spike trains with the
same firing rate profiles as the experimental data. This al-
lows us to preserve both single-neuron firing properties
and also common gain modulations or firing rate correla-
tions across the entire population, which are are ubiqui-
tous properties of experimental datasets (Ecker et al.,
2014; Rabinowitz et al., 2015; Mochizuki et al., 2016;
Riehle et al., 2018). Moreover, the nonstationary point
processes we propose in this study account for the single
neuron statistics, such as ISI, dead-time, and firing regu-
larities, which are also fundamental properties of experi-
mental spike trains (Nawrot et al., 2008; Cardanobile and
Rotter, 2010; Deger et al., 2012).
These realistic, but artificial, data serve to identify the

strengths and weaknesses of the tested surrogate techni-
ques. In this case, we modeled both experimental sessions
as PPD and Gamma processes, with firing rate modulations,
dead-times, and regularities estimated for each neuron from
the experimental data (Fig. 8A). The analysis of these data
with SPADE led to a large number of FPs when employing
UD. However, all other surrogate techniques showed a con-
siderably low number of FPs. A minimal number of FPs is to
be expected, as it is inherent to any statistical test. Thus, we
conclude that UD is not appropriate for its employment with-
in the context of the SPADE analysis, whereas all other sur-
rogate techniques can be considered valid.
Finally, we analyzed experimental data from Brochier et

al. (2018). UD in this context leads to a large number of
detected patterns (Fig. 10). Given the results obtained
from the previous sections, analytically and through simu-
lations, we consider these patterns as putative FPs (taking
into consideration that in the case of experimental data
we have no ground truth at hand). In contrast, employing
the other surrogates the number of patterns detected is
much smaller than using UD. Still, the number of patterns
is larger than for the analysis of the corresponding nonsta-
tionary artificial data with these surrogates. Given also our

previous results, we consider the patterns detected in the
experimental data by the alternative surrogate techniques
as significant, i.e., the patterns do not result from any
overestimation of the significance. This is confirmed by
the fact that the patterns, retrieved for UDD, JISI-D, ISI-D,
WIN-SHUFF, and TR-SHIFT, show almost identical par-
ticipating neurons, lags, and occurrence numbers. Hence,
we conclude that the different surrogates, although they
move the spikes in different ways, lead to an almost iden-
tical significance level.
We conclude that UDD, JISI-D, ISI-D, WIN-SHUFF, and

TR-SHIFT are appropriate for the detection of spatiotemporal
spike patterns in the SPADE analysis, and UD is not.
Furthermore, we suggest TR-SHIFT as the surrogate
method of choice for the SPADE analysis, because it is
a technique that (1) is easy to explain and to implement;
(2) reflects more closely the hypothesis of temporal
coding; (3) reproduces exactly the most relevant statis-
tical features of a spike train (Table 1; Fig. 4); (4) is as
conservative as the other methods that we propose;
and (5) employs fewer parameters than the other techni-
ques with the same performance.
Of course, the employment of surrogates is not only re-

stricted to the context of a SPADE analysis but was used
in other studies for the evaluation of correlations (Gerstein
et al., 1978; Hatsopoulos et al., 2003; Pipa and Grün,
2003; Pipa et al., 2003, 2007; Pazienti et al., 2007, 2008;
Maldonado et al., 2008; Smith and Kohn, 2008; Grün,
2009; Harrison and Geman, 2009; Louis et al., 2010a;
Dann et al., 2016; Torre et al., 2016b). Still, the choice of a
particular surrogate technique has to be done appropri-
ately and cautiously case by case. Not only because the
statistical test might produce FPs (or FNs), but also be-
cause the concrete null-hypothesis distribution repre-
sents the model that is to be falsified. The degree of how
conservative or liberal the statistical analysis can be,
through the choice of the surrogate technique, becomes
then not only a feature of the test but more a scientific
question per se regarding neural coding.
Several studies have already investigated the impact of

different surrogate techniques in the context of spike time
correlations. For example, in Louis et al. (2010b), the au-
thors evaluated the influence of surrogate techniques on
cross-correlation analysis of two parallel spike trains; in
Grün (2009) and Louis et al. (2010a), the focus was on the
effect of surrogate techniques on synchronous events in
the context of the Unitary Events analysis (Grün et al.,
2002a,b; Pipa and Grün, 2003; Pipa et al., 2003, 2007,
2013). Because of the results of these studies, we have
concentrated on surrogate techniques that preserve the
firing rate profile of the experimental neurons. Methods
such as spike train randomization (within single trials;
Grün et al., 2003), spike exchange (across neurons or
trials; Harrison et al., 2007; Smith and Kohn, 2008), ISI
shuffling (within and across trials; Nádasdy et al., 1999;
Masuda and Aihara, 2003; Ikegaya et al., 2004; Rivlin-
Etzion et al., 2006), spike shuffling across neurons (within-
trial; Nádasdy et al., 1999; Ikegaya et al., 2004) do not
fulfill our requirements (Grün, 2009). Other methods are
designed to preserve the auto-correlation of a spike train,
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with the assumption of stationarity and the Markov prop-
erty of a process (Ricci et al., 2019; Perinelli et al., 2020).
Some studies have already shown evidence of prob-

lems arising from the application of UD, such as the non-
preservation of the ISI distribution (Louis et al., 2010a), in
particular in the case of the Poisson process (Platkiewicz
et al., 2017), but not in the context of multiple parallel
spike trains, or in the context of binarization. We extended
previous similar comparative studies of surrogate techni-
ques (done only for pairwise correlations; Louis et al.,
2010a) to the context of precisely timed higher-order
spike correlations. In considering repeating patterns with
time delays between spikes across several neurons, it has
been argued that the processing of information may be re-
flected in the presence of delayed higher-order correla-
tions in parallel spike trains, in particular, in the context of
the synfire chain model (Abeles, 1991; Bienenstock, 1995;
Diesmann et al., 1999; Izhikevich, 2006; Oettl et al., 2020).
Given our present state of ignorance concerning the de-
tailed computational functioning of the brain, the use of
statistical methods like SPADE seems to be almost the
only way to find out whether the detailed, precisely timed
coordination across several individual neurons is impor-
tant for information processing beyond the more global
temporal covariations of neural activity that appear be-
tween cortical layers and across cortical areas.
We have started to apply SPADE to a large set of exper-

imental data to investigate the presence of spatiotempo-
ral patterns and evaluate their relation to behavior. The
first encouraging results are shown in Figure 10.
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