000908751 001__ 908751
000908751 005__ 20230123110633.0
000908751 0247_ $$2doi$$a10.1103/PhysRevB.106.035130
000908751 0247_ $$2ISSN$$a1098-0121
000908751 0247_ $$2ISSN$$a2469-9977
000908751 0247_ $$2ISSN$$a0163-1829
000908751 0247_ $$2ISSN$$a0556-2805
000908751 0247_ $$2ISSN$$a1095-3795
000908751 0247_ $$2ISSN$$a1538-4489
000908751 0247_ $$2ISSN$$a1550-235X
000908751 0247_ $$2ISSN$$a2469-9950
000908751 0247_ $$2ISSN$$a2469-9969
000908751 0247_ $$2Handle$$a2128/31550
000908751 0247_ $$2altmetric$$aaltmetric:132864072
000908751 0247_ $$2WOS$$aWOS:000832544900003
000908751 037__ $$aFZJ-2022-02807
000908751 082__ $$a530
000908751 1001_ $$00000-0001-6742-5597$$aGoikoetxea, J.$$b0
000908751 245__ $$aMultiplet effects in the electronic correlation of one-dimensional magnetic transition metal oxides on metals
000908751 260__ $$aWoodbury, NY$$bInst.$$c2022
000908751 3367_ $$2DRIVER$$aarticle
000908751 3367_ $$2DataCite$$aOutput Types/Journal article
000908751 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1658749795_23442
000908751 3367_ $$2BibTeX$$aARTICLE
000908751 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908751 3367_ $$00$$2EndNote$$aJournal Article
000908751 520__ $$aWe use the constrained random-phase approximation (cRPA) method to calculate the Hubbard U parameter in four one-dimensional magnetic transition metal atom oxides of composition XO2 (X = Mn, Fe, Co, Ni) on Ir(100). In addition to the expected screening of the oxide, i.e., a significant reduction of the U value by the presence of the metal substrate, we find a strong dependence on the electronic configuration (multiplet) of the X(d) orbital. Each particular electronic configuration attained by atom X is dictated by the O ligands, as well as by the charge transfer and hybridization with the Ir(100) substrate. We find that MnO2 and NiO2 chains exhibit two different screening regimes, while the case of CoO2 is somewhere in between. The electronic structure of the MnO2 chain remains almost unchanged upon adsorption. Therefore, in this regime, the additional screening is predominantly generated by the electrons of the neighboring metal surface atoms. The screening strength for NiO2/Ir(100) is found to depend on the Ni(d) configuration in the adsorbed state. The case of FeO2 shows an exceptional behavior, as it is the only insulating system in the absence of the metallic substrate and, thus, it has the largest U value. However, this value is significantly reduced by the two mentioned screening effects after adsorption.
000908751 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000908751 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908751 7001_ $$0P:(DE-Juel1)130644$$aFriedrich, C.$$b1
000908751 7001_ $$0P:(DE-Juel1)130545$$aBihlmayer, G.$$b2
000908751 7001_ $$0P:(DE-Juel1)130548$$aBlügel, S.$$b3
000908751 7001_ $$00000-0001-5281-3212$$aArnau, A.$$b4
000908751 7001_ $$00000-0002-5189-6690$$aBlanco-Rey, M.$$b5$$eCorresponding author
000908751 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.106.035130$$gVol. 106, no. 3, p. 035130$$n3$$p035130$$tPhysical review / B$$v106$$x1098-0121$$y2022
000908751 8564_ $$uhttps://juser.fz-juelich.de/record/908751/files/PhysRevB.106.035130.pdf$$yOpenAccess
000908751 8564_ $$uhttps://juser.fz-juelich.de/record/908751/files/main.pdf$$yOpenAccess
000908751 909CO $$ooai:juser.fz-juelich.de:908751$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000908751 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130644$$aForschungszentrum Jülich$$b1$$kFZJ
000908751 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130545$$aForschungszentrum Jülich$$b2$$kFZJ
000908751 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b3$$kFZJ
000908751 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000908751 9141_ $$y2022
000908751 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000908751 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-05-04
000908751 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000908751 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000908751 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908751 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000908751 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000908751 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000908751 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000908751 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000908751 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-11
000908751 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-11
000908751 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2021$$d2022-11-11
000908751 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-11
000908751 920__ $$lyes
000908751 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000908751 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000908751 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000908751 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000908751 980__ $$ajournal
000908751 980__ $$aVDB
000908751 980__ $$aUNRESTRICTED
000908751 980__ $$aI:(DE-Juel1)IAS-1-20090406
000908751 980__ $$aI:(DE-Juel1)PGI-1-20110106
000908751 980__ $$aI:(DE-82)080009_20140620
000908751 980__ $$aI:(DE-82)080012_20140620
000908751 9801_ $$aFullTexts