000908769 001__ 908769
000908769 005__ 20240709082033.0
000908769 0247_ $$2doi$$a10.1016/j.molliq.2021.117796
000908769 0247_ $$2ISSN$$a0167-7322
000908769 0247_ $$2ISSN$$a1873-3166
000908769 0247_ $$2Handle$$a2128/31537
000908769 0247_ $$2WOS$$aWOS:000713883900016
000908769 037__ $$aFZJ-2022-02825
000908769 082__ $$a540
000908769 1001_ $$0P:(DE-Juel1)180579$$aChen, Yingzhen$$b0$$ufzj
000908769 245__ $$aInvestigation of the protolytic equilibrium of a highly Brønsted acidic ionic liquid and residual water using Raman spectroscopy
000908769 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2022
000908769 3367_ $$2DRIVER$$aarticle
000908769 3367_ $$2DataCite$$aOutput Types/Journal article
000908769 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1658497026_6966
000908769 3367_ $$2BibTeX$$aARTICLE
000908769 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908769 3367_ $$00$$2EndNote$$aJournal Article
000908769 520__ $$aProtic ionic liquids (PILs) are promising candidates as non-aqueous proton-conducting electrolytes for use in polymer electrolyte membrane fuel cells with operating temperatures over 100 °C. 2-sulfoethylammonium triflate [2-Sea][TfO] is one such PIL electrolyte, in which the highly Brønsted acidic sulfoalkylammonium cations act as mobile protonic charge carriers and proton donors. In order to gain a molecular-level understanding of proton transfer in a PIL electrolyte containing a small amount of residual water from fuel cell operation, the protolytic equilibrium of the highly acidic cation was investigated by means of Raman spectroscopy. Density functional theory (DFT) calculations were conducted to identify the vibration modes sensitive to protonation and to gain information on the possible conformation of the cation. The deprotonation of the 2-sulfoethylammonium cation resulted in a characteristic upward frequency shift in the ν(SC) stretching vibration. An equilibrium constant of 0.23 ± 0.09 was calculated for the protolytic reaction, indicating [2-Sea][TfO] as a promising proton donor for the fuel cell application.
000908769 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000908769 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908769 7001_ $$0P:(DE-Juel1)166532$$aEndres, Manuel B.$$b1
000908769 7001_ $$0P:(DE-Juel1)129938$$aGiffin, Jürgen$$b2$$ufzj
000908769 7001_ $$0P:(DE-Juel1)140525$$aKorte, Carsten$$b3$$eCorresponding author$$ufzj
000908769 773__ $$0PERI:(DE-600)1491496-7$$a10.1016/j.molliq.2021.117796$$gVol. 345, p. 117796 -$$p117796 -$$tJournal of molecular liquids$$v345$$x0167-7322$$y2022
000908769 8564_ $$uhttps://juser.fz-juelich.de/record/908769/files/Manuscript_Protolytic%20Equilibrium_k20211001.pdf$$yPublished on 2021-10-12. Available in OpenAccess from 2023-10-12.
000908769 8564_ $$uhttps://juser.fz-juelich.de/record/908769/files/SupplementaryMaterial_202101013.pdf$$yPublished on 2021-10-12. Available in OpenAccess from 2023-10-12.
000908769 909CO $$ooai:juser.fz-juelich.de:908769$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000908769 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180579$$aForschungszentrum Jülich$$b0$$kFZJ
000908769 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)180579$$aRWTH Aachen$$b0$$kRWTH
000908769 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129938$$aForschungszentrum Jülich$$b2$$kFZJ
000908769 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140525$$aForschungszentrum Jülich$$b3$$kFZJ
000908769 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000908769 9141_ $$y2022
000908769 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000908769 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000908769 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000908769 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-18$$wger
000908769 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-18
000908769 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-18
000908769 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-18
000908769 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-18
000908769 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MOL LIQ : 2021$$d2022-11-18
000908769 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-18
000908769 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-18
000908769 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-18
000908769 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ MOL LIQ : 2021$$d2022-11-18
000908769 920__ $$lyes
000908769 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000908769 9801_ $$aFullTexts
000908769 980__ $$ajournal
000908769 980__ $$aVDB
000908769 980__ $$aUNRESTRICTED
000908769 980__ $$aI:(DE-Juel1)IEK-14-20191129
000908769 981__ $$aI:(DE-Juel1)IET-4-20191129