000908782 001__ 908782
000908782 005__ 20230123110634.0
000908782 0247_ $$2doi$$a10.1088/1361-648X/ac8135
000908782 0247_ $$2ISSN$$a0953-8984
000908782 0247_ $$2ISSN$$a1361-648X
000908782 0247_ $$2Handle$$a2128/31532
000908782 0247_ $$2pmid$$a35835084
000908782 0247_ $$2WOS$$aWOS:000828870400001
000908782 037__ $$aFZJ-2022-02836
000908782 082__ $$a530
000908782 1001_ $$0P:(DE-Juel1)177041$$aShehada, Sufyan$$b0$$eCorresponding author$$ufzj
000908782 245__ $$aInterplay of magnetic states and hyperfine fields of iron dimers on MgO(001)
000908782 260__ $$aBristol$$bIOP Publ.$$c2022
000908782 3367_ $$2DRIVER$$aarticle
000908782 3367_ $$2DataCite$$aOutput Types/Journal article
000908782 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1658492966_6966
000908782 3367_ $$2BibTeX$$aARTICLE
000908782 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908782 3367_ $$00$$2EndNote$$aJournal Article
000908782 520__ $$aIndividual nuclear spin states can have very long lifetimes and could be useful as qubits. Progress in this direction was achieved on MgO/Ag(001) via detection of the hyperfine interaction (HFI) of Fe, Ti and Cu adatoms using scanning tunneling microscopy. Previously, we systematically quantified from first-principles the HFI for the whole series of 3d transition adatoms (Sc-Cu) deposited on various ultra-thin insulators, establishing the trends of the computed HFI with respect to the filling of the magnetic s- and d-orbitals of the adatoms and on the bonding with the substrate. Here we explore the case of dimers by investigating the correlation between the HFI and the magnetic state of free standing Fe dimers, single Fe adatoms and dimers deposited on a bilayer of MgO(001). We find that the magnitude of the HFI can be controlled by switching the magnetic state of the dimers. For short Fe-Fe distances, the antiferromagnetic state enhances the HFI with respect to that of the ferromagnetic state. By increasing the distance between the magnetic atoms, a transition toward the opposite behavior is observed. Furthermore, we demonstrate the ability to substantially modify the HFI by atomic control of the location of the adatoms on the substrate. Our results establish the limits of applicability of the usual hyperfine hamiltonian and we propose an extension based on multiple scattering processes.
000908782 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000908782 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908782 7001_ $$0P:(DE-Juel1)145395$$ados Santos Dias, Manuel$$b1
000908782 7001_ $$00000-0002-1443-1501$$aAbusaa, Muayad$$b2
000908782 7001_ $$0P:(DE-Juel1)130805$$aLounis, Samir$$b3$$eCorresponding author$$ufzj
000908782 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/1361-648X/ac8135$$gVol. 34, no. 38, p. 385802 -$$n38$$p385802$$tJournal of physics / Condensed matter$$v34$$x0953-8984$$y2022
000908782 8564_ $$uhttps://juser.fz-juelich.de/record/908782/files/Shehada_2022_J._Phys.%20_Condens._Matter_34_385802.pdf$$yOpenAccess
000908782 8767_ $$d2022-12-02$$eHybrid-OA$$jPublish and Read
000908782 909CO $$ooai:juser.fz-juelich.de:908782$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
000908782 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177041$$aForschungszentrum Jülich$$b0$$kFZJ
000908782 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145395$$aForschungszentrum Jülich$$b1$$kFZJ
000908782 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130805$$aForschungszentrum Jülich$$b3$$kFZJ
000908782 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000908782 9141_ $$y2022
000908782 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000908782 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000908782 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000908782 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-02-03
000908782 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000908782 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000908782 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908782 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-11$$wger
000908782 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000908782 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000908782 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000908782 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000908782 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS-CONDENS MAT : 2021$$d2022-11-11
000908782 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000908782 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-11
000908782 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000908782 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000908782 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000908782 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000908782 9801_ $$aFullTexts
000908782 980__ $$ajournal
000908782 980__ $$aVDB
000908782 980__ $$aUNRESTRICTED
000908782 980__ $$aI:(DE-Juel1)IAS-1-20090406
000908782 980__ $$aI:(DE-Juel1)PGI-1-20110106
000908782 980__ $$aI:(DE-82)080009_20140620
000908782 980__ $$aI:(DE-82)080012_20140620
000908782 980__ $$aAPC