000908794 001__ 908794
000908794 005__ 20230123110634.0
000908794 0247_ $$2doi$$a10.1088/1361-648X/ac699d
000908794 0247_ $$2ISSN$$a0953-8984
000908794 0247_ $$2ISSN$$a1361-648X
000908794 0247_ $$2Handle$$a2128/31551
000908794 0247_ $$2altmetric$$aaltmetric:123071007
000908794 0247_ $$2pmid$$a35453127
000908794 0247_ $$2WOS$$aWOS:000796206700001
000908794 037__ $$aFZJ-2022-02839
000908794 082__ $$a530
000908794 1001_ $$0P:(DE-Juel1)168211$$aBrinker, Sascha$$b0
000908794 245__ $$aGeneralization of the Landau–Lifshitz–Gilbert equation by multi-body contributions to Gilbert damping for non-collinear magnets
000908794 260__ $$aBristol$$bIOP Publ.$$c2022
000908794 3367_ $$2DRIVER$$aarticle
000908794 3367_ $$2DataCite$$aOutput Types/Journal article
000908794 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1658749905_20805
000908794 3367_ $$2BibTeX$$aARTICLE
000908794 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908794 3367_ $$00$$2EndNote$$aJournal Article
000908794 520__ $$aWe propose a systematic and sequential expansion of the Landau–Lifshitz–Gilbert equation utilizing the dependence of the Gilbert damping tensor on the angle between magnetic moments, which arises from multi-body scattering processes. The tensor consists of a damping-like term and a correction to the gyromagnetic ratio. Based on electronic structure theory, both terms are shown to depend on e.g. the scalar, anisotropic, vector-chiral and scalar-chiral products of magnetic moments: ei ⋅ ej, (nij ⋅ ei)(nij ⋅ ej), nij ⋅ (ei × ej), ${({\mathbf{e}}_{i}\cdot {\mathbf{e}}_{j})}^{2}$, ei ⋅ (ej × ek) ..., where some terms are subjected to the spin–orbit field nij in first and second order. We explore the magnitude of the different contributions using both the Alexander–Anderson model and time-dependent density functional theory in magnetic adatoms and dimers deposited on Au(111) surface.
000908794 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000908794 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908794 7001_ $$0P:(DE-Juel1)145395$$ados Santos Dias, Manuel$$b1$$eCorresponding author$$ufzj
000908794 7001_ $$0P:(DE-Juel1)130805$$aLounis, Samir$$b2$$eCorresponding author$$ufzj
000908794 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/1361-648X/ac699d$$gVol. 34, no. 28, p. 285802 -$$n28$$p285802$$tJournal of physics / Condensed matter$$v34$$x0953-8984$$y2022
000908794 8564_ $$uhttps://juser.fz-juelich.de/record/908794/files/Brinker_2022_J._Phys.%20_Condens._Matter_34_285802-1.pdf$$yOpenAccess
000908794 8767_ $$d2022-07-22$$eHybrid-OA$$jPublish and Read
000908794 909CO $$ooai:juser.fz-juelich.de:908794$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
000908794 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168211$$aForschungszentrum Jülich$$b0$$kFZJ
000908794 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145395$$aForschungszentrum Jülich$$b1$$kFZJ
000908794 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130805$$aForschungszentrum Jülich$$b2$$kFZJ
000908794 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000908794 9141_ $$y2022
000908794 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000908794 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-02-03
000908794 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000908794 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000908794 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908794 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-11$$wger
000908794 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000908794 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000908794 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000908794 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000908794 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS-CONDENS MAT : 2021$$d2022-11-11
000908794 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000908794 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-11
000908794 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000908794 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000908794 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000908794 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000908794 980__ $$ajournal
000908794 980__ $$aVDB
000908794 980__ $$aUNRESTRICTED
000908794 980__ $$aI:(DE-Juel1)IAS-1-20090406
000908794 980__ $$aI:(DE-Juel1)PGI-1-20110106
000908794 980__ $$aI:(DE-82)080009_20140620
000908794 980__ $$aI:(DE-82)080012_20140620
000908794 980__ $$aAPC
000908794 9801_ $$aAPC
000908794 9801_ $$aFullTexts