001     908794
005     20230123110634.0
024 7 _ |a 10.1088/1361-648X/ac699d
|2 doi
024 7 _ |a 0953-8984
|2 ISSN
024 7 _ |a 1361-648X
|2 ISSN
024 7 _ |a 2128/31551
|2 Handle
024 7 _ |a altmetric:123071007
|2 altmetric
024 7 _ |a 35453127
|2 pmid
024 7 _ |a WOS:000796206700001
|2 WOS
037 _ _ |a FZJ-2022-02839
082 _ _ |a 530
100 1 _ |a Brinker, Sascha
|0 P:(DE-Juel1)168211
|b 0
245 _ _ |a Generalization of the Landau–Lifshitz–Gilbert equation by multi-body contributions to Gilbert damping for non-collinear magnets
260 _ _ |a Bristol
|c 2022
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1658749905_20805
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We propose a systematic and sequential expansion of the Landau–Lifshitz–Gilbert equation utilizing the dependence of the Gilbert damping tensor on the angle between magnetic moments, which arises from multi-body scattering processes. The tensor consists of a damping-like term and a correction to the gyromagnetic ratio. Based on electronic structure theory, both terms are shown to depend on e.g. the scalar, anisotropic, vector-chiral and scalar-chiral products of magnetic moments: ei ⋅ ej, (nij ⋅ ei)(nij ⋅ ej), nij ⋅ (ei × ej), ${({\mathbf{e}}_{i}\cdot {\mathbf{e}}_{j})}^{2}$, ei ⋅ (ej × ek) ..., where some terms are subjected to the spin–orbit field nij in first and second order. We explore the magnitude of the different contributions using both the Alexander–Anderson model and time-dependent density functional theory in magnetic adatoms and dimers deposited on Au(111) surface.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a dos Santos Dias, Manuel
|0 P:(DE-Juel1)145395
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Lounis, Samir
|0 P:(DE-Juel1)130805
|b 2
|e Corresponding author
|u fzj
773 _ _ |a 10.1088/1361-648X/ac699d
|g Vol. 34, no. 28, p. 285802 -
|0 PERI:(DE-600)1472968-4
|n 28
|p 285802
|t Journal of physics / Condensed matter
|v 34
|y 2022
|x 0953-8984
856 4 _ |u https://juser.fz-juelich.de/record/908794/files/Brinker_2022_J._Phys.%20_Condens._Matter_34_285802-1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:908794
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168211
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145395
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130805
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2021-02-03
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2022-11-11
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-11
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS-CONDENS MAT : 2021
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-11
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-11
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21