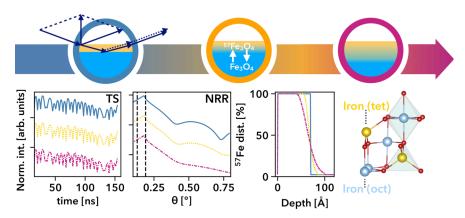
Site-selective Cation Transport in the Near-Surface Region of Magnetite (001)


S. Tober^{a,b*}, J.-C. Schober^{a,b}, E. E. Beck^{a,b}, M. Creutzburg^{a,b}, S. Chung^a, A. Vlad^c, H.-C. Wille^a, O. Leupold^a, I. Sergeev^a, K. Schlage^a, H. Noei^a, V. Vonk^a and A. Stierle^{a,b}

^aDeutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany, ^bUniversität Hamburg, Fachbereich Physik, Luruper Chaussee 129, 22607 Hamburg, Germany, ^cSynchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, 91192 Gif sur Yvette, France, *present address: Jülich Center for Neutron Science 2 (JCNS-2), Wilhelm-Johnen-Straße, 52428 Jülich, Germany

steffen.tober@desy.de

The structure and composition of its near-surface region strongly influence the performance of magnetite (Fe $_3$ O $_4$) based catalysts and devices. Phenomena like oxidative regrowth and the formation and lifting of the subsurface cation vacancy reconstruction suggest a cation transport process altering the structure of magnetite's near-surface region [1-3]. Cation transport induced by step-wise vacuum annealing was monitored at the interface of a homoepitaxially grown 57 Fe $_3$ O $_4$ thin-film and its natural Fe $_3$ O $_4$ (001) single crystalline substrate. The 57 Fe distribution, stoichiometry and electron density of the thin-film were monitored simultaneously by nuclear forward scattering and X-ray reflectivity at the P01 beamline at PETRAIII [4]. Joint fits of time spectra (TS) and nuclear resonant reflectivity (NRR) measured after each annealing step provided site-selective 57 Fe distribution profiles indicating cation transport occurring predominantly via the octahedral sublattice as expected under oxidizing conditions starting from 470 K on [5]. Diffusion coefficients on the order of 10^{-22} m²/s, much lower than predicted by bulk diffusion models [6], suggest that near-surface cation diffusion might be influenced by surface reactions counteracting the diffusion of 57 Fe into the substrate.

The diffusion experiments are complemented by a structural characterization of the magnetite thin-film by surface X-ray diffraction measured at the SixS beamline at SOLEIL further emphasizing the link between structure, stoichiometry and transport processes in magnetite.

Fig. 1: Scheme of the cation transport experiment. Cation interdiffusion in a ⁵⁷Fe₃O₄/Fe₃O₄ sample upon annealing was monitored by nuclear forward scattering in specular geometry. Site-selectivity for octahedrally and tetrahedrally coordinated ⁵⁷Fe cations was achieved by measuring TS while NRR provided depth selective information about the ⁵⁷Fe distribution. Simulated TS and NRR corresponding to the degree of cation intermixing in the scheme above are shown.

References: [1] S. Nie et al. JACS 135, 10091 (2013); [2] R. Bliem et al. Science 346, 1215 (2014); [3] B. Arndt et al. Surf. Sci. 653, 76 (2016); [4] M. Andreeva et al., Mosc. Univ. Phys. Bull. 63, 132 (2008); [5] K. Becker et al., Phys. Chem. Solids 54, 923 (1993), [6] R. Dieckmann, Ber. Bunsenges. Phys. Chem. 81, 344 (1977)