000908808 001__ 908808
000908808 005__ 20230123110634.0
000908808 0247_ $$2doi$$a10.1038/s41467-022-29766-8
000908808 0247_ $$2Handle$$a2128/31554
000908808 0247_ $$2altmetric$$aaltmetric:127243179
000908808 0247_ $$2pmid$$apmid:35468875
000908808 0247_ $$2WOS$$aWOS:000787388900018
000908808 037__ $$aFZJ-2022-02853
000908808 082__ $$a500
000908808 1001_ $$0P:(DE-HGF)0$$aChen, Jianzhong$$b0
000908808 245__ $$aShared and unique brain network features predict cognitive, personality, and mental health scores in the ABCD study
000908808 260__ $$a[London]$$bNature Publishing Group UK$$c2022
000908808 3367_ $$2DRIVER$$aarticle
000908808 3367_ $$2DataCite$$aOutput Types/Journal article
000908808 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1658757976_20088
000908808 3367_ $$2BibTeX$$aARTICLE
000908808 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908808 3367_ $$00$$2EndNote$$aJournal Article
000908808 520__ $$aHow individual differences in brain network organization track behavioral variability is a fundamental question in systems neuroscience. Recent work suggests that resting-state and task-state functional connectivity can predict specific traits at the individual level. However, most studies focus on single behavioral traits, thus not capturing broader relationships across behaviors. In a large sample of 1858 typically developing children from the Adolescent Brain Cognitive Development (ABCD) study, we show that predictive network features are distinct across the domains of cognitive performance, personality scores and mental health assessments. On the other hand, traits within each behavioral domain are predicted by similar network features. Predictive network features and models generalize to other behavioral measures within the same behavioral domain. Although tasks are known to modulate the functional connectome, predictive network features are similar between resting and task states. Overall, our findings reveal shared brain network features that account for individual variation within broad domains of behavior in childhood.
000908808 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000908808 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908808 7001_ $$00000-0001-6752-5707$$aTam, Angela$$b1
000908808 7001_ $$0P:(DE-HGF)0$$aKebets, Valeria$$b2
000908808 7001_ $$00000-0001-9133-3561$$aOrban, Csaba$$b3
000908808 7001_ $$00000-0002-3546-4580$$aOoi, Leon Qi Rong$$b4
000908808 7001_ $$00000-0001-5708-6966$$aAsplund, Christopher L.$$b5
000908808 7001_ $$0P:(DE-HGF)0$$aMarek, Scott$$b6
000908808 7001_ $$00000-0002-6876-7078$$aDosenbach, Nico U. F.$$b7
000908808 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b8
000908808 7001_ $$0P:(DE-HGF)0$$aBzdok, Danilo$$b9
000908808 7001_ $$00000-0001-6583-803X$$aHolmes, Avram J.$$b10
000908808 7001_ $$00000-0002-0119-3276$$aYeo, B. T. Thomas$$b11$$eCorresponding author
000908808 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-022-29766-8$$gVol. 13, no. 1, p. 2217$$n1$$p2217$$tNature Communications$$v13$$x2041-1723$$y2022
000908808 8564_ $$uhttps://juser.fz-juelich.de/record/908808/files/s41467-022-29766-8.pdf$$yOpenAccess
000908808 909CO $$ooai:juser.fz-juelich.de:908808$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000908808 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a National University of Singapore$$b0
000908808 9101_ $$0I:(DE-HGF)0$$60000-0001-6752-5707$$a National University of Singapore$$b1
000908808 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a National University of Singapore$$b2
000908808 9101_ $$0I:(DE-HGF)0$$60000-0001-9133-3561$$a National University of Singapore$$b3
000908808 9101_ $$0I:(DE-HGF)0$$60000-0002-3546-4580$$a National University of Singapore$$b4
000908808 9101_ $$0I:(DE-HGF)0$$60000-0001-5708-6966$$a National University of Singapore$$b5
000908808 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Washington University School of Medicine$$b6
000908808 9101_ $$0I:(DE-HGF)0$$60000-0002-6876-7078$$a Washington University School of Medicine$$b7
000908808 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b8$$kFZJ
000908808 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$a HHU Düsseldorf$$b8
000908808 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a McGill University, Montreal$$b9
000908808 9101_ $$0I:(DE-HGF)0$$60000-0001-6583-803X$$a Yale University$$b10
000908808 9101_ $$0I:(DE-HGF)0$$60000-0002-0119-3276$$a National University of Singapore$$b11
000908808 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000908808 9141_ $$y2022
000908808 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000908808 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000908808 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000908808 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908808 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-02
000908808 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000908808 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000908808 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2021$$d2022-11-11
000908808 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000908808 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000908808 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-10-13T14:44:21Z
000908808 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-10-13T14:44:21Z
000908808 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-10-13T14:44:21Z
000908808 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000908808 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000908808 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-11
000908808 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-11
000908808 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-11
000908808 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2022-11-11
000908808 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000908808 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT COMMUN : 2021$$d2022-11-11
000908808 920__ $$lyes
000908808 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000908808 980__ $$ajournal
000908808 980__ $$aVDB
000908808 980__ $$aUNRESTRICTED
000908808 980__ $$aI:(DE-Juel1)INM-7-20090406
000908808 9801_ $$aFullTexts