Hauptseite > Publikationsdatenbank > Shared and unique brain network features predict cognitive, personality, and mental health scores in the ABCD study > print |
001 | 908808 | ||
005 | 20230123110634.0 | ||
024 | 7 | _ | |a 10.1038/s41467-022-29766-8 |2 doi |
024 | 7 | _ | |a 2128/31554 |2 Handle |
024 | 7 | _ | |a altmetric:127243179 |2 altmetric |
024 | 7 | _ | |a pmid:35468875 |2 pmid |
024 | 7 | _ | |a WOS:000787388900018 |2 WOS |
037 | _ | _ | |a FZJ-2022-02853 |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Chen, Jianzhong |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Shared and unique brain network features predict cognitive, personality, and mental health scores in the ABCD study |
260 | _ | _ | |a [London] |c 2022 |b Nature Publishing Group UK |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1658757976_20088 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a How individual differences in brain network organization track behavioral variability is a fundamental question in systems neuroscience. Recent work suggests that resting-state and task-state functional connectivity can predict specific traits at the individual level. However, most studies focus on single behavioral traits, thus not capturing broader relationships across behaviors. In a large sample of 1858 typically developing children from the Adolescent Brain Cognitive Development (ABCD) study, we show that predictive network features are distinct across the domains of cognitive performance, personality scores and mental health assessments. On the other hand, traits within each behavioral domain are predicted by similar network features. Predictive network features and models generalize to other behavioral measures within the same behavioral domain. Although tasks are known to modulate the functional connectome, predictive network features are similar between resting and task states. Overall, our findings reveal shared brain network features that account for individual variation within broad domains of behavior in childhood. |
536 | _ | _ | |a 5252 - Brain Dysfunction and Plasticity (POF4-525) |0 G:(DE-HGF)POF4-5252 |c POF4-525 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Tam, Angela |0 0000-0001-6752-5707 |b 1 |
700 | 1 | _ | |a Kebets, Valeria |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Orban, Csaba |0 0000-0001-9133-3561 |b 3 |
700 | 1 | _ | |a Ooi, Leon Qi Rong |0 0000-0002-3546-4580 |b 4 |
700 | 1 | _ | |a Asplund, Christopher L. |0 0000-0001-5708-6966 |b 5 |
700 | 1 | _ | |a Marek, Scott |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Dosenbach, Nico U. F. |0 0000-0002-6876-7078 |b 7 |
700 | 1 | _ | |a Eickhoff, Simon B. |0 P:(DE-Juel1)131678 |b 8 |
700 | 1 | _ | |a Bzdok, Danilo |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Holmes, Avram J. |0 0000-0001-6583-803X |b 10 |
700 | 1 | _ | |a Yeo, B. T. Thomas |0 0000-0002-0119-3276 |b 11 |e Corresponding author |
773 | _ | _ | |a 10.1038/s41467-022-29766-8 |g Vol. 13, no. 1, p. 2217 |0 PERI:(DE-600)2553671-0 |n 1 |p 2217 |t Nature Communications |v 13 |y 2022 |x 2041-1723 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/908808/files/s41467-022-29766-8.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:908808 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a National University of Singapore |0 I:(DE-HGF)0 |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a National University of Singapore |0 I:(DE-HGF)0 |b 1 |6 0000-0001-6752-5707 |
910 | 1 | _ | |a National University of Singapore |0 I:(DE-HGF)0 |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a National University of Singapore |0 I:(DE-HGF)0 |b 3 |6 0000-0001-9133-3561 |
910 | 1 | _ | |a National University of Singapore |0 I:(DE-HGF)0 |b 4 |6 0000-0002-3546-4580 |
910 | 1 | _ | |a National University of Singapore |0 I:(DE-HGF)0 |b 5 |6 0000-0001-5708-6966 |
910 | 1 | _ | |a Washington University School of Medicine |0 I:(DE-HGF)0 |b 6 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Washington University School of Medicine |0 I:(DE-HGF)0 |b 7 |6 0000-0002-6876-7078 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)131678 |
910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 8 |6 P:(DE-Juel1)131678 |
910 | 1 | _ | |a McGill University, Montreal |0 I:(DE-HGF)0 |b 9 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Yale University |0 I:(DE-HGF)0 |b 10 |6 0000-0001-6583-803X |
910 | 1 | _ | |a National University of Singapore |0 I:(DE-HGF)0 |b 11 |6 0000-0002-0119-3276 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5252 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-02-02 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-02 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-02-02 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-02-02 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-02 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT COMMUN : 2021 |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-10-13T14:44:21Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-10-13T14:44:21Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2021-10-13T14:44:21Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-11 |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b NAT COMMUN : 2021 |d 2022-11-11 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)INM-7-20090406 |k INM-7 |l Gehirn & Verhalten |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-7-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|