001     908808
005     20230123110634.0
024 7 _ |a 10.1038/s41467-022-29766-8
|2 doi
024 7 _ |a 2128/31554
|2 Handle
024 7 _ |a altmetric:127243179
|2 altmetric
024 7 _ |a pmid:35468875
|2 pmid
024 7 _ |a WOS:000787388900018
|2 WOS
037 _ _ |a FZJ-2022-02853
082 _ _ |a 500
100 1 _ |a Chen, Jianzhong
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Shared and unique brain network features predict cognitive, personality, and mental health scores in the ABCD study
260 _ _ |a [London]
|c 2022
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1658757976_20088
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a How individual differences in brain network organization track behavioral variability is a fundamental question in systems neuroscience. Recent work suggests that resting-state and task-state functional connectivity can predict specific traits at the individual level. However, most studies focus on single behavioral traits, thus not capturing broader relationships across behaviors. In a large sample of 1858 typically developing children from the Adolescent Brain Cognitive Development (ABCD) study, we show that predictive network features are distinct across the domains of cognitive performance, personality scores and mental health assessments. On the other hand, traits within each behavioral domain are predicted by similar network features. Predictive network features and models generalize to other behavioral measures within the same behavioral domain. Although tasks are known to modulate the functional connectome, predictive network features are similar between resting and task states. Overall, our findings reveal shared brain network features that account for individual variation within broad domains of behavior in childhood.
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Tam, Angela
|0 0000-0001-6752-5707
|b 1
700 1 _ |a Kebets, Valeria
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Orban, Csaba
|0 0000-0001-9133-3561
|b 3
700 1 _ |a Ooi, Leon Qi Rong
|0 0000-0002-3546-4580
|b 4
700 1 _ |a Asplund, Christopher L.
|0 0000-0001-5708-6966
|b 5
700 1 _ |a Marek, Scott
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Dosenbach, Nico U. F.
|0 0000-0002-6876-7078
|b 7
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 8
700 1 _ |a Bzdok, Danilo
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Holmes, Avram J.
|0 0000-0001-6583-803X
|b 10
700 1 _ |a Yeo, B. T. Thomas
|0 0000-0002-0119-3276
|b 11
|e Corresponding author
773 _ _ |a 10.1038/s41467-022-29766-8
|g Vol. 13, no. 1, p. 2217
|0 PERI:(DE-600)2553671-0
|n 1
|p 2217
|t Nature Communications
|v 13
|y 2022
|x 2041-1723
856 4 _ |u https://juser.fz-juelich.de/record/908808/files/s41467-022-29766-8.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:908808
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a National University of Singapore
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a National University of Singapore
|0 I:(DE-HGF)0
|b 1
|6 0000-0001-6752-5707
910 1 _ |a National University of Singapore
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a National University of Singapore
|0 I:(DE-HGF)0
|b 3
|6 0000-0001-9133-3561
910 1 _ |a National University of Singapore
|0 I:(DE-HGF)0
|b 4
|6 0000-0002-3546-4580
910 1 _ |a National University of Singapore
|0 I:(DE-HGF)0
|b 5
|6 0000-0001-5708-6966
910 1 _ |a Washington University School of Medicine
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Washington University School of Medicine
|0 I:(DE-HGF)0
|b 7
|6 0000-0002-6876-7078
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-Juel1)131678
910 1 _ |a McGill University, Montreal
|0 I:(DE-HGF)0
|b 9
|6 P:(DE-HGF)0
910 1 _ |a Yale University
|0 I:(DE-HGF)0
|b 10
|6 0000-0001-6583-803X
910 1 _ |a National University of Singapore
|0 I:(DE-HGF)0
|b 11
|6 0000-0002-0119-3276
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 0
914 1 _ |y 2022
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2021
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-10-13T14:44:21Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-10-13T14:44:21Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2021-10-13T14:44:21Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-11
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2021
|d 2022-11-11
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21