000908810 001__ 908810
000908810 005__ 20230123110634.0
000908810 0247_ $$2doi$$a10.1109/ACCESS.2022.3156659
000908810 0247_ $$2Handle$$a2128/31555
000908810 0247_ $$2WOS$$aWOS:000772384700001
000908810 037__ $$aFZJ-2022-02855
000908810 082__ $$a621.3
000908810 1001_ $$0P:(DE-Juel1)177908$$aGoni, Maria$$b0
000908810 245__ $$aSmartphone-Based Digital Biomarkers for Parkinson’s Disease in a Remotely-Administered Setting
000908810 260__ $$aNew York, NY$$bIEEE$$c2022
000908810 3367_ $$2DRIVER$$aarticle
000908810 3367_ $$2DataCite$$aOutput Types/Journal article
000908810 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1658828513_23442
000908810 3367_ $$2BibTeX$$aARTICLE
000908810 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908810 3367_ $$00$$2EndNote$$aJournal Article
000908810 520__ $$aSmartphone-based digital biomarker (DB) assessments provide objective measures of daily-life tasks and thus hold the promise to improve diagnosis and monitoring of Parkinson’s disease (PD). To date, little is known about which tasks perform best for these purposes and how different confounds including comorbidities, age and sex affect their accuracy. Here we systematically assess the ability of common self-administered smartphone-based tasks to differentiate PD patients and healthy controls (HC) with and without accounting for the above confounds. Using a large cohort of PD patients and healthy volunteers acquired in the mPower study, we extracted about 700 features commonly reported in previous PD studies for gait, balance, voice and tapping tasks. We perform a series of experiments systematically assessing the effects of age, sex and comorbidities on the accuracy of the above tasks for differentiation of PD patients and HC using several machine learning algorithms. When accounting for age, sex and comorbidities, the highest balanced accuracy on hold-out data (73%) was achieved using random forest when combining all tasks followed by tapping using relevance vector machine (67%). Only moderate accuracies were achieved for other tasks (60% for balance, 56% for gait and 53% for voice data). Not accounting for the confounders consistently yielded higher accuracies of up to 77% when combining all tasks. Our results demonstrate the importance of controlling DB data for age and comorbidities.
000908810 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000908810 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908810 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon$$b1
000908810 7001_ $$0P:(DE-Juel1)177922$$aSahandi Far, Mehran$$b2
000908810 7001_ $$0P:(DE-Juel1)172843$$aPatil, Kaustubh R.$$b3
000908810 7001_ $$0P:(DE-Juel1)177727$$aDukart, Jürgen$$b4$$eCorresponding author
000908810 773__ $$0PERI:(DE-600)2687964-5$$a10.1109/ACCESS.2022.3156659$$gVol. 10, p. 28361 - 28384$$p28361 - 28384$$tIEEE access$$v10$$x2169-3536$$y2022
000908810 8564_ $$uhttps://juser.fz-juelich.de/record/908810/files/Smartphone-Based_Digital_Biomarkers_for_Parkinsons_Disease_in_a_Remotely-Administered_Setting.pdf$$yOpenAccess
000908810 909CO $$ooai:juser.fz-juelich.de:908810$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000908810 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)177908$$a HHU Düsseldorf$$b0
000908810 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b1$$kFZJ
000908810 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$aHHU Düsseldorf $$b1
000908810 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177922$$aForschungszentrum Jülich$$b2$$kFZJ
000908810 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)177922$$a HHU Düsseldorf$$b2
000908810 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b3$$kFZJ
000908810 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172843$$a HHU Düsseldorf$$b3
000908810 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177727$$aForschungszentrum Jülich$$b4$$kFZJ
000908810 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)177727$$a HHU Düsseldorf$$b4
000908810 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000908810 9141_ $$y2022
000908810 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000908810 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-01-28
000908810 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000908810 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000908810 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-28
000908810 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908810 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-28
000908810 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE ACCESS : 2021$$d2022-11-11
000908810 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000908810 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000908810 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-06-13T11:44:26Z
000908810 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-06-13T11:44:26Z
000908810 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-06-13T11:44:26Z
000908810 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000908810 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-11
000908810 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000908810 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-11
000908810 920__ $$lyes
000908810 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000908810 980__ $$ajournal
000908810 980__ $$aVDB
000908810 980__ $$aUNRESTRICTED
000908810 980__ $$aI:(DE-Juel1)INM-7-20090406
000908810 9801_ $$aFullTexts