000908827 001__ 908827
000908827 005__ 20230217124534.0
000908827 0247_ $$2doi$$a10.1007/s00415-022-11071-5
000908827 0247_ $$2ISSN$$a0012-1037
000908827 0247_ $$2ISSN$$a0340-5354
000908827 0247_ $$2ISSN$$a0939-1517
000908827 0247_ $$2ISSN$$a1432-1459
000908827 0247_ $$2ISSN$$a1619-800X
000908827 0247_ $$2Handle$$a2128/31564
000908827 0247_ $$2pmid$$a35364683
000908827 0247_ $$2WOS$$aWOS:000777245700002
000908827 037__ $$aFZJ-2022-02863
000908827 082__ $$a610
000908827 1001_ $$00000-0001-6221-8601$$aThieme, Andreas$$b0$$eCorresponding author
000908827 245__ $$aThe CCAS-scale in hereditary ataxias: helpful on the group level, particularly in SCA3, but limited in individual patients
000908827 260__ $$aBerlin$$bSpringer$$c2022
000908827 264_1 $$2Crossref$$3online$$bSpringer Science and Business Media LLC$$c2022-04-01
000908827 264_1 $$2Crossref$$3print$$bSpringer Science and Business Media LLC$$c2022-08-01
000908827 264_1 $$2Crossref$$3print$$bSpringer Science and Business Media LLC$$c2022-08-01
000908827 3367_ $$2DRIVER$$aarticle
000908827 3367_ $$2DataCite$$aOutput Types/Journal article
000908827 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1658900884_11504
000908827 3367_ $$2BibTeX$$aARTICLE
000908827 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908827 3367_ $$00$$2EndNote$$aJournal Article
000908827 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000908827 542__ $$2Crossref$$i2022-04-01$$uhttps://creativecommons.org/licenses/by/4.0
000908827 542__ $$2Crossref$$i2022-04-01$$uhttps://creativecommons.org/licenses/by/4.0
000908827 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908827 7001_ $$0P:(DE-HGF)0$$aFaber, Jennifer$$b1
000908827 7001_ $$0P:(DE-HGF)0$$aSulzer, Patricia$$b2
000908827 7001_ $$0P:(DE-Juel1)177889$$aReetz, Kathrin$$b3$$ufzj
000908827 7001_ $$0P:(DE-HGF)0$$aDogan, Imis$$b4
000908827 7001_ $$0P:(DE-HGF)0$$aBarkhoff, Miriam$$b5
000908827 7001_ $$0P:(DE-HGF)0$$aKrahe, Janna$$b6
000908827 7001_ $$0P:(DE-HGF)0$$aJacobi, Heike$$b7
000908827 7001_ $$0P:(DE-HGF)0$$aAktories, Julia-Elisabeth$$b8
000908827 7001_ $$0P:(DE-Juel1)131622$$aMinnerop, Martina$$b9
000908827 7001_ $$0P:(DE-HGF)0$$aElben, Saskia$$b10
000908827 7001_ $$0P:(DE-HGF)0$$avan der Veen, Raquel$$b11
000908827 7001_ $$0P:(DE-HGF)0$$aMüller, Johanna$$b12
000908827 7001_ $$0P:(DE-HGF)0$$aBatsikadze, Giorgi$$b13
000908827 7001_ $$0P:(DE-HGF)0$$aKonczak, Jürgen$$b14
000908827 7001_ $$0P:(DE-HGF)0$$aSynofzik, Matthis$$b15
000908827 7001_ $$0P:(DE-HGF)0$$aRoeske, Sandra$$b16
000908827 7001_ $$0P:(DE-HGF)0$$aTimmann, Dagmar$$b17
000908827 77318 $$2Crossref$$3journal-article$$a10.1007/s00415-022-11071-5$$bSpringer Science and Business Media LLC$$d2022-04-01$$n8$$p4363-4374$$tJournal of Neurology$$v269$$x0340-5354$$y2022
000908827 773__ $$0PERI:(DE-600)1421299-7$$a10.1007/s00415-022-11071-5$$gVol. 269, no. 8, p. 4363 - 4374$$n8$$p4363-4374$$tJournal of neurology$$v269$$x0340-5354$$y2022
000908827 8564_ $$uhttps://juser.fz-juelich.de/record/908827/files/Thieme2022_Article_TheCCAS-scaleInHereditaryAtaxi.pdf$$yOpenAccess
000908827 909CO $$ooai:juser.fz-juelich.de:908827$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000908827 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177889$$aForschungszentrum Jülich$$b3$$kFZJ
000908827 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131622$$aForschungszentrum Jülich$$b9$$kFZJ
000908827 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000908827 9141_ $$y2022
000908827 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000908827 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000908827 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000908827 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000908827 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NEUROL : 2015
000908827 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000908827 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000908827 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000908827 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000908827 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908827 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000908827 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000908827 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000908827 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000908827 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000908827 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000908827 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000908827 9801_ $$aFullTexts
000908827 980__ $$ajournal
000908827 980__ $$aVDB
000908827 980__ $$aUNRESTRICTED
000908827 980__ $$aI:(DE-Juel1)INM-1-20090406
000908827 980__ $$aI:(DE-Juel1)INM-11-20170113
000908827 999C5 $$1JD Schmahmann$$2Crossref$$9-- missing cx lookup --$$a10.1016/s0074-7742(08)60363-3$$p433 -$$tInt Rev Neurobiol$$uSchmahmann JD, Sherman JC (1997) Cerebellar cognitive affective syndrome. Int Rev Neurobiol 41:433–440. https://doi.org/10.1016/s0074-7742(08)60363-3$$v41$$y1997
000908827 999C5 $$1JD Schmahmann$$2Crossref$$9-- missing cx lookup --$$a10.1093/brain/121.4.561$$p561 -$$tBrain$$uSchmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121:561–579. https://doi.org/10.1093/brain/121.4.561$$v121$$y1998
000908827 999C5 $$1F Hoche$$2Crossref$$9-- missing cx lookup --$$a10.1093/brain/awx317$$p248 -$$tBrain$$uHoche F, Guell X, Vangel MG, Sherman JC, Schmahmann JD (2018) The cerebellar cognitive affective/ Schmahmann syndrome scale. Brain 141:248–270. https://doi.org/10.1093/brain/awx317$$v141$$y2018
000908827 999C5 $$1M King$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41593-019-0436-x$$p1371 -$$tNat Neurosci$$uKing M, Hernandez-Castillo CR, Poldrack RA, Ivry RB, Diedrichsen J (2019) Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nat Neurosci 22:1371–1378. https://doi.org/10.1038/s41593-019-0436-x$$v22$$y2019
000908827 999C5 $$1M Adamaszek$$2Crossref$$9-- missing cx lookup --$$a10.1007/s12311-016-0815-8$$p552 -$$tCerebellum$$uAdamaszek M, D’Agata F, Ferrucci R, Habas C, Keulen S, Kirkby KC, Leggio M, Marien P, Molinari M, Moulton E, Orsi L, Van Overwalle F, Papadelis C, Priori A, Sacchetti B, Schutter DJ, Styliadis C, Verhoeven J (2017) Consensus paper: cerebellum and emotion. Cerebellum 16:552–576. https://doi.org/10.1007/s12311-016-0815-8$$v16$$y2017
000908827 999C5 $$1GPD Argyropoulos$$2Crossref$$9-- missing cx lookup --$$a10.1007/s12311-019-01068-8$$p102 -$$tCerebellum$$uArgyropoulos GPD, van Dun K, Adamaszek M, Leggio M, Manto M, Masciullo M, Molinari M, Stoodley CJ, Van Overwalle F, Ivry RB, Schmahmann JD (2020) The cerebellar cognitive affective/schmahmann syndrome: a task force paper. Cerebellum 19:102–125. https://doi.org/10.1007/s12311-019-01068-8$$v19$$y2020
000908827 999C5 $$1H Jacobi$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00415-021-10486-w$$p3921 -$$tJ Neurol$$uJacobi H, Faber J, Timmann D, Klockgether T (2021) Update cerebellum and cognition. J Neurol 268:3921–3925. https://doi.org/10.1007/s00415-021-10486-w$$v268$$y2021
000908827 999C5 $$1X Guell$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.neuroimage.2018.01.082$$p437 -$$tNeuroimage$$uGuell X, Gabrieli JDE, Schmahmann JD (2018) Triple representation of language, working memory, social and emotion processing in the cerebellum: convergent evidence from task and seed-based resting-state fMRI analyses in a single large cohort. Neuroimage 172:437–449. https://doi.org/10.1016/j.neuroimage.2018.01.082$$v172$$y2018
000908827 999C5 $$1C Globas$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00415-003-0258-2$$p1482 -$$tJ Neurol$$uGlobas C, Bosch S, Zuhlke C, Daum I, Dichgans J, Burk K (2003) The cerebellum and cognition. Intellectual function in spinocerebellar ataxia type 6 (SCA6). J Neurol 250:1482–1487. https://doi.org/10.1007/s00415-003-0258-2$$v250$$y2003
000908827 999C5 $$1I Dogan$$2Crossref$$9-- missing cx lookup --$$a10.1002/acn3.315$$p572 -$$tAnn Clin Transl Neurol$$uDogan I, Tinnemann E, Romanzetti S, Mirzazade S, Costa AS, Werner CJ, Heim S, Fedosov K, Schulz S, Timmann D, Giordano IA, Klockgether T, Schulz JB, Reetz K (2016) Cognition in Friedreich’s ataxia: a behavioral and multimodal imaging study. Ann Clin Transl Neurol 3:572–587. https://doi.org/10.1002/acn3.315$$v3$$y2016
000908827 999C5 $$1P Garrard$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00415-008-0680-6$$p398 -$$tJ Neurol$$uGarrard P, Martin NH, Giunti P, Cipolotti L (2008) Cognitive and social cognitive functioning in spinocerebellar ataxia : a preliminary characterization. J Neurol 255:398–405. https://doi.org/10.1007/s00415-008-0680-6$$v255$$y2008
000908827 999C5 $$1FE Cooper$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.neuropsychologia.2011.11.017$$p189 -$$tNeuropsychologia$$uCooper FE, Grube M, Von Kriegstein K, Kumar S, English P, Kelly TP, Chinnery PF, Griffiths TD (2012) Distinct critical cerebellar subregions for components of verbal working memory. Neuropsychologia 50:189–197. https://doi.org/10.1016/j.neuropsychologia.2011.11.017$$v50$$y2012
000908827 999C5 $$1M Suenaga$$2Crossref$$9-- missing cx lookup --$$a10.1136/jnnp.2007.119883$$p496 -$$tJ Neurol Neurosurg Psychiatry$$uSuenaga M, Kawai Y, Watanabe H, Atsuta N, Ito M, Tanaka F, Katsuno M, Fukatsu H, Naganawa S, Sobue G (2008) Cognitive impairment in spinocerebellar ataxia type 6. J Neurol Neurosurg Psychiatry 79:496–499. https://doi.org/10.1136/jnnp.2007.119883$$v79$$y2008
000908827 999C5 $$1Y Kawai$$2Crossref$$9-- missing cx lookup --$$a10.1159/000206850$$p257 -$$tEur Neurol$$uKawai Y, Suenaga M, Watanabe H, Sobue G (2009) Cognitive impairment in spinocerebellar degeneration. Eur Neurol 61:257–268. https://doi.org/10.1159/000206850$$v61$$y2009
000908827 999C5 $$1T Schmitz-Huebsch$$2Crossref$$9-- missing cx lookup --$$a10.1002/mds.2369$$p870 -$$tMov Disord$$uSchmitz-Huebsch T, Coudert M, Tezenas du Montcel S, Giunti P, Labrum R, Durr A, Ribai P, Charles P, Linnemann C, Schoels L, Rakowicz M, Rola R, Zdzienicka E, Fancellu R, Mariotti C, Baliko L, Melegh B, Filla A, Salvatore E, van de Warrenburg BP, Szymanski S, Infante J, Timmann D, Boesch S, Depondt C, Kang JS, Schulz JB, Klopstock T, Lossnitzer N, Lowe B, Frick C, Rottlander D, Schlaepfer TE, Klockgether T (2011) Depression comorbidity in spinocerebellar ataxia. Mov Disord 26:870–876. https://doi.org/10.1002/mds.2369$$v26$$y2011
000908827 999C5 $$1A Nieto$$2Crossref$$9-- missing cx lookup --$$a10.1007/s12311-012-0363-9$$p834 -$$tCerebellum$$uNieto A, Correia R, de Nóbrega E, Montón F, Hess S, Barroso J (2012) Cognition in Friedreich ataxia. Cerebellum 11:834–844. https://doi.org/10.1007/s12311-012-0363-9$$v11$$y2012
000908827 999C5 $$1TM Zawacki$$2Crossref$$9-- missing cx lookup --$$a10.1002/mds.10033$$p1004 -$$tMov Disord$$uZawacki TM, Grace J, Friedman JH, Sudarsky L (2002) Executive and emotional dysfunction in Machado-Joseph disease. Mov Disord 17:1004–1010. https://doi.org/10.1002/mds.10033$$v17$$y2002
000908827 999C5 $$1TM Lopes$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00415-013-6998-8$$p2370 -$$tJ Neurol$$uLopes TM, D’Abreu A, França MC, Yasuda CL, Betting LE, Samara AB, Castellano G, Somazz JC, Balthazar ML, Lopes-Cendes I, Cendes F (2013) Widespread neuronal damage and cognitive dysfunction in spinocerebellar ataxia type 3. J Neurol 260:2370–2379. https://doi.org/10.1007/s00415-013-6998-8$$v260$$y2013
000908827 999C5 $$1I Klinke$$2Crossref$$9-- missing cx lookup --$$a10.1007/s12311-010-0183-8$$p433 -$$tCerebellum$$uKlinke I, Minnerop M, Schmitz-Hübsch T, Hendriks M, Klockgether T, Wüllner U, Helmstaedter C (2010) Neuropsychological features of patients with spinocerebellar ataxia (SCA) types 1, 2, 3, and 6. Cerebellum 9:433–442. https://doi.org/10.1007/s12311-010-0183-8$$v9$$y2010
000908827 999C5 $$1J Ma$$2Crossref$$uMa J, Wu C, Lei J, Zhang X (2014) Cognitive impairments in patients with spinocerebellar ataxia types 1, 2 and 3 are positively correlated to the clinical severity of ataxia symptoms. Int J Clin Exp Med 7:5765–5771$$y2014
000908827 999C5 $$1F D'Agata$$2Crossref$$9-- missing cx lookup --$$a10.1007/s12311-011-0276-z$$p600 -$$tCerebellum$$uD’Agata F, Caroppo P, Baudino B, Caglio M, Croce M, Bergui M, Tamietto M, Mortara P, Orsi L (2011) The recognition of facial emotions in spinocerebellar ataxia patients. Cerebellum 10:600–610. https://doi.org/10.1007/s12311-011-0276-z$$v10$$y2011
000908827 999C5 $$1A Nieto$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ijchp.2017.11.004$$p18 -$$tInt J Clin Health Psychol$$uNieto A, Hernández-Torres A, Pérez-Flores J, Montón F (2018) Depressive symptoms in Friedreich ataxia. Int J Clin Health Psychol 18:18–26. https://doi.org/10.1016/j.ijchp.2017.11.004$$v18$$y2018
000908827 999C5 $$1P Braga-Neto$$2Crossref$$9-- missing cx lookup --$$a10.1007/s12311-012-0354-x$$p1037 -$$tCerebellum$$uBraga-Neto P, Dutra LA, Pedroso JL, Felício AC, Alessi H, Santos-Galduroz RF, Bertolucci PH, Castiglioni ML, Bressan RA, de Garrido GE, Barsottini OG, Jackowski A (2012) Cognitive deficits in Machado-Joseph disease correlate with hypoperfusion of visual system areas. Cerebellum 11:1037–1044. https://doi.org/10.1007/s12311-012-0354-x$$v11$$y2012
000908827 999C5 $$1Y Kawai$$2Crossref$$9-- missing cx lookup --$$a10.1001/archneur.61.11.1757$$p1757 -$$tArch Neurol$$uKawai Y, Takeda A, Abe Y, Washimi Y, Tanaka F, Sobue G (2004) Cognitive impairments in Machado-Joseph disease. Arch Neurol 61:1757–1760. https://doi.org/10.1001/archneur.61.11.1757$$v61$$y2004
000908827 999C5 $$1S Cocozza$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00415-019-09582-9$$p350 -$$tJ Neurol$$uCocozza S, Costabile T, Pontillo G, Lieto M, Russo C, Radice L, Pane C, Filla A, Brunetti A, Saccà F (2020) Cerebellum and cognition in Friedreich ataxia: a voxel-based morphometry and volumetric MRI study. J Neurol 267:350–358. https://doi.org/10.1007/s00415-019-09582-9$$v267$$y2020
000908827 999C5 $$1A Nieto$$2Crossref$$9-- missing cx lookup --$$a10.1007/s12311-013-0457-z$$p504 -$$tCerebellum$$uNieto A, Correia R, de Nóbrega E, Montón F, Barroso J (2013) Cognition in late-onset Friedreich ataxia. Cerebellum 12:504–512. https://doi.org/10.1007/s12311-013-0457-z$$v12$$y2013
000908827 999C5 $$1S Roeske$$2Crossref$$9-- missing cx lookup --$$a10.1002/mds.25512$$p1435 -$$tMov Disord$$uRoeske S, Filla I, Heim S, Amunts K, Helmstaedter C, Wüllner U, Wagner M, Klockgether T, Minnerop M (2013) Progressive cognitive dysfunction in spinocerebellar ataxia type 3. Mov Disord 28:1435–1438. https://doi.org/10.1002/mds.25512$$v28$$y2013
000908827 999C5 $$1I Tamura$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00415-016-8344-4$$p260 -$$tJ Neurol$$uTamura I, Takei A, Hamada S, Nonaka M, Kurosaki Y, Moriwaka F (2017) Cognitive dysfunction in patients with spinocerebellar ataxia type 6. J Neurol 264:260–267. https://doi.org/10.1007/s00415-016-8344-4$$v264$$y2017
000908827 999C5 $$1Z Rentiya$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.neuropsychologia.2017.10.036$$p25 -$$tNeuropsychologia$$uRentiya Z, Khan NS, Ergun E, Ying SH, Desmond JE (2017) Distinct cerebellar regions related to motor and cognitive performance in SCA6 patients. Neuropsychologia 107:25–30. https://doi.org/10.1016/j.neuropsychologia.2017.10.036$$v107$$y2017
000908827 999C5 $$1LP Selvadurai$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00415-016-8252-7$$p2215 -$$tJ Neurol$$uSelvadurai LP, Harding IH, Corben LA, Stagnitti MR, Storey E, Egan GF, Delatycki MB, Georgiou-Karistianis N (2016) Cerebral and cerebellar grey matter atrophy in Friedreich ataxia: the IMAGE-FRDA study. J Neurol 263:2215–2223. https://doi.org/10.1007/s00415-016-8252-7$$v263$$y2016
000908827 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s12311-021-01282-3$$uYap KH, Kessels RPC, Azmin S, van de Warrenburg B, Mohamed Ibrahim N (2021) Neurocognitive changes in spinocerebellar ataxia type 3: a systematic review with a narrative design. Cerebellum: Epub ahead of print. https://doi.org/10.1007/s12311-021-01282-3
000908827 999C5 $$1A Thieme$$2Crossref$$9-- missing cx lookup --$$a10.1186/s42466-020-00071-3$$p39 -$$tNeurol Res Pract$$uThieme A, Roeske S, Faber J, Sulzer P, Minnerop M, Elben S, Jacobi H, Reetz K, Dogan I, Barkhoff M, Konczak J, Wondzinski E, Siebler M, Mueller O, Sure U, Schmahmann JD, Klockgether T, Synofzik M, Timmann D (2020) Validation of a German version of the Cerebellar Cognitive Affective/ Schmahmann Syndrome Scale: preliminary version and study protocol. Neurol Res Pract 2:39. https://doi.org/10.1186/s42466-020-00071-3$$v2$$y2020
000908827 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s12311-021-01305-z$$uRodríguez-Labrada R, Batista-Izquierdo A, González-Melix Z, Reynado-Cejas L, Vázquez- Mojena Y, Sanz YA, Canales-Ochoa N, González-Zaldívar Y, Dogan I, Reetz K, Velázquez- Pérez L (2021) Cognitive decline is closely associated with ataxia severity in Spinocerebellar Ataxia Type 2: a Validation Study of the Schmahmann Syndrome Scale. Cerebellum: Epub ahead of print. https://doi.org/10.1007/s12311-021-01305-z
000908827 999C5 $$1RPPW Maas$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00415-021-10516-7$$p3456 -$$tJ Neurol$$uMaas RPPW, Killaars S, van de Warrenburg BPC, Schutter DJLG (2021) The cerebellar cognitive affective syndrome scale reveals early neuropsychological deficits in SCA3 patients. J Neurol 268:3456–3466. https://doi.org/10.1007/s00415-021-10516-7$$v268$$y2021
000908827 999C5 $$1CD Stephen$$2Crossref$$9-- missing cx lookup --$$a10.1212/WNL.0000000000008959$$pe705 -$$tNeurology$$uStephen CD, Balkwill D, James P, Haxton E, Sassower K, Schmahmann JD, Eichler F, Lewis R (2020) Quantitative oculomotor and nonmotor assessments in late-onset GM2 gangliosidosis. Neurology 94:e705–e717. https://doi.org/10.1212/WNL.0000000000008959$$v94$$y2020
000908827 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s12311-021-01290-3$$uChirino-Pérez A, Marrufo-Meléndez OR, Muñoz-López JI, Hernandez-Castillo CR, Ramirez- Garcia G, Díaz R, Nuñez-Orozco L, Fernandez-Ruiz J (2021) Mapping the cerebellar cognitive affective syndrome in patients with chronic cerebellar strokes. Cerebellum: Epub ahead of print. https://doi.org/10.1007/s12311-021-01290-3
000908827 999C5 $$1G Naeije$$2Crossref$$9-- missing cx lookup --$$a10.1002/acn3.51079$$p1050 -$$tAnn Clin Transl Neurol$$uNaeije G, Rai M, Allaerts N, Sjogard M, De Tiège X, Pandolfo M (2020) Cerebellar cognitive disorder parallels cerebellar motor symptoms in Friedreich ataxia. Ann Clin Transl Neurol 7:1050–1054. https://doi.org/10.1002/acn3.51079$$v7$$y2020
000908827 999C5 $$1A Thieme$$2Crossref$$9-- missing cx lookup --$$a10.1093/brain/awaa41$$tBrain$$uThieme A, Röske S, Faber J, Sulzer P, Minnerop M, Elben S, Reetz K, Dogan I, Barkhoff M, Konczak J, Wondzinski E, Siebler M, Hetze S, Müller O, Sure U, Klockgether T, Synofzik M, Timmann D (2021) Reference values for the cerebellar cognitive affective syndrome scale: age and education matter. Brain 144:e20. https://doi.org/10.1093/brain/awaa41$$v144$$y2021
000908827 999C5 $$1T Schmitz-Huebsch$$2Crossref$$9-- missing cx lookup --$$a10.1212/01.wnl.0000219042.60538.92$$p1717 -$$tNeurology$$uSchmitz-Huebsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, Giunti P, Globas C, Infante J, Kang JS, Kremer B, Mariotti C, Melegh B, Pandolfo M, Rakowicz M, Ribai P, Rola R, Schoels L, Szymanski S, van de Warrenburg BP, Durr A, Klockgether T, Fancellu R (2006) Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 66:1717–1720. https://doi.org/10.1212/01.wnl.0000219042.60538.92$$v66$$y2006
000908827 999C5 $$1H Jacobi$$2Crossref$$9-- missing cx lookup --$$a10.1007/s12311-012-0421-3$$p418 -$$tCerebellum$$uJacobi H, Rakowicz M, Rola R, Fancellu R, Mariotti C, Charles P, Durr A, Kueper M, Timmann D, Linnemann C, Schoels L, Kaut O, Schaub C, Filla A, Baliko L, Melegh B, Kang JS, Giunti P, van de Warrenburg BP, Fimmers R, Klockgether T (2013) Inventory of Non-Ataxia Signs (INAS): validation of a new clinical assessment instrument. Cerebellum 12:418–428. https://doi.org/10.1007/s12311-012-0421-3$$v12$$y2013
000908827 999C5 $$1J Ho$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41592-019-0470-3$$p565 -$$tNat Methods$$uHo J, Tumkaya T, Aryal S, Choi H, Claridge-Chang A (2019) Moving beyond P values: data analysis with estimation graphics. Nat Methods 16:565–566. https://doi.org/10.1038/s41592-019-0470-3$$v16$$y2019
000908827 999C5 $$1YT Van der Schouw$$2Crossref$$9-- missing cx lookup --$$a10.1093/fampra/9.4.506$$p506 -$$tFam Pract$$uVan der Schouw YT, Verbeek AL, Ruijs JH (1992) ROC curves for the initial assessment of new diagnostic tests. Fam Pract 9:506–511. https://doi.org/10.1093/fampra/9.4.506$$v9$$y1992
000908827 999C5 $$1RB D'Agostino$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.gheart.2013.01.001$$p11 -$$tGlob Heart$$uD’Agostino RB, Pencina MJ, Massaro JM, Coady S (2013) Cardiovascular disease risk assessment: insights from Framingham. Glob Heart 8:11–23. https://doi.org/10.1016/j.gheart.2013.01.001$$v8$$y2013
000908827 999C5 $$1R Faletti$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00261-015-0574-x$$p926 -$$tAbdom Radiol (NY)$$uFaletti R, Battisti G, Discalzi A, Grognardi ML, Martinello S, Oderda M, Gontero P, Bergamasco L, Cassinis MC, Fonio P (2016) Can DW-MRI, with its ADC values, be a reliable predictor of biopsy outcome in patients with suspected prostate cancer? Abdom Radiol (NY) 41:926–933. https://doi.org/10.1007/s00261-015-0574-x$$v41$$y2016
000908827 999C5 $$1CB Terwee$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jclinepi.2006.03.012$$p34 -$$tJ Clin Epidemiol$$uTerwee CB, Bot SD, de Boer MR, van der Windt DA, Knol DL, Dekker J, Bouter LM, de Vet HC (2007) Quality criteria were proposed for measurement properties of health status questionnaires. J Clin Epidemiol 60:34–42. https://doi.org/10.1016/j.jclinepi.2006.03.012$$v60$$y2007
000908827 999C5 $$1WJ Youden$$2Crossref$$9-- missing cx lookup --$$a10.1002/1097-0142(1950)3:1<32:aid-cncr2820030106>3.0.co;2-3$$p32 -$$tCancer$$uYouden WJ (1950) Index for rating diagnostic tests. Cancer 3:32–35. https://doi.org/10.1002/1097-0142(1950)3:1%3c32:aid-cncr2820030106%3e3.0.co;2-3$$v3$$y1950
000908827 999C5 $$1P Braga-Neto$$2Crossref$$9-- missing cx lookup --$$a10.1007/s12311-011-0318-6$$p549 -$$tCerebellum$$uBraga-Neto P, Pedroso JL, Alessi H, Dutra LA, Felicio AC, Minett T, Weisman P, Santos-Galduroz RF, Bertolucci PH, Gabbai AA, Barsottini OG (2012) Cerebellar cognitive affective syndrome in Machado Joseph disease: core clinical features. Cerebellum 11:549–556. https://doi.org/10.1007/s12311-011-0318-6$$v11$$y2012
000908827 999C5 $$1PL Strick$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev.neuro.31.060407.125606$$p413 -$$tAnnu Rev Neurosci$$uStrick PL, Dum RP, Fiez JA (2009) Cerebellum and nonmotor function. Annu Rev Neurosci 32:413–434. https://doi.org/10.1146/annurev.neuro.31.060407.125606$$v32$$y2009
000908827 999C5 $$1F Palesi$$2Crossref$$9-- missing cx lookup --$$a10.1002/hbm.25551$$p4348 -$$tHum Brain Mapp$$uPalesi F, Ferrante M, Gaviraghi M, Misiti A, Savini G, Lascialfari A, D’Angelo E, Gandini Wheeler-Kingshott CAM (2021) Motor and higher-order functions topography of the human dentate nuclei identified with tractography and clustering methods. Hum Brain Mapp 42:4348–4361. https://doi.org/10.1002/hbm.25551$$v42$$y2021
000908827 999C5 $$1AM Tedesco$$2Crossref$$9-- missing cx lookup --$$a10.1093/brain/awr266$$p3672 -$$tBrain$$uTedesco AM, Chiricozzi FR, Clausi S, Lupo M, Molinari M, Leggio MG (2011) The cerebellar cognitive profile. Brain 134:3672–3686. https://doi.org/10.1093/brain/awr266$$v134$$y2011
000908827 999C5 $$1AH Koeppen$$2Crossref$$9-- missing cx lookup --$$a10.1007/s12311-013-0456-0$$p493 -$$tCerebellum$$uKoeppen AH, Ramirez RL, Bjork ST, Bauer P, Feustel PJ (2013) The reciprocal cerebellar circuitry in human hereditary ataxia. Cerebellum 12:493–503. https://doi.org/10.1007/s12311-013-0456-0$$v12$$y2013
000908827 999C5 $$2Crossref$$uBidichandani SI, Delatycki MB (1993–2021) Friedreich Ataxia. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A (eds) Gene Reviews [Internet]
000908827 999C5 $$1MR Stefanescu$$2Crossref$$9-- missing cx lookup --$$a10.1093/brain/awv064$$p1182 -$$tBrain$$uStefanescu MR, Dohnalek M, Maderwald S, Thürling M, Minnerop M, Beck A, Schlamann M, Diedrichsen J, Ladd ME, Timmann D (2015) Structural and functional MRI abnormalities of cerebellar cortex and nuclei in SCA3, SCA6 and Friedreich’s ataxia. Brain 138:1182–1197. https://doi.org/10.1093/brain/awv064$$v138$$y2015
000908827 999C5 $$1A Hernández-Torres$$2Crossref$$9-- missing cx lookup --$$a10.1017/S1355617720000958$$p343 -$$tJ Int Neuropsychol Soc$$uHernández-Torres A, Montón F, Hess Medler S, de Nóbrega É, Nieto A (2021) Longitudinal study of cognitive functioning in Friedreich’s Ataxia. J Int Neuropsychol Soc 27:343–350. https://doi.org/10.1017/S1355617720000958$$v27$$y2021
000908827 999C5 $$1S Sayah$$2Crossref$$9-- missing cx lookup --$$a10.1007/s12311-017-0890-5$$p204 -$$tCerebellum$$uSayah S, Rotgé JY, Francisque H, Gargiulo M, Czernecki V, Justo D, Lahlou-Laforet K, Hahn V, Pandolfo M, Pelissolo A, Fossati P, Durr A (2018) Personality and neuropsychological profiles in Friedreich Ataxia. Cerebellum 17:204–212. https://doi.org/10.1007/s12311-017-0890-5$$v17$$y2018
000908827 999C5 $$1F Giocondo$$2Crossref$$9-- missing cx lookup --$$a10.1080/00207454.2017.1377198$$p182 -$$tInt J Neurosci$$uGiocondo F, Curcio G (2018) Spinocerebellar ataxia: a critical review of cognitive and sociocognitive deficits. Int J Neurosci 128:182–191. https://doi.org/10.1080/00207454.2017.1377198$$v128$$y2018
000908827 999C5 $$1F Van Overwalle$$2Crossref$$9-- missing cx lookup --$$a10.1093/scan/nsz032$$p549 -$$tSoc Cogn Affect Neurosci$$uVan Overwalle F, De Coninck S, Heleven E, Perrotta G, Taib NOB, Manto M, Marien P (2019) The role of the cerebellum in reconstructing social action sequences: a pilot study. Soc Cogn Affect Neurosci 14:549–558. https://doi.org/10.1093/scan/nsz032$$v14$$y2019
000908827 999C5 $$1R Shishegar$$2Crossref$$9-- missing cx lookup --$$a10.1007/s12311-019-01094-6$$p182 -$$tCerebellum$$uShishegar R, Harding IH, Corben LA, Delatycki MB, Storey E, Egan GF, Georgiou-Karistianis N (2020) Longitudinal increases in cerebral brain activation during working memory performance in Friedreich Ataxia: 24-month data from IMAGE-FRDA. Cerebellum 19:182–191. https://doi.org/10.1007/s12311-019-01094-6$$v19$$y2020