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Abstract: There are currently no standard methods for evaluating gait and balance performance
at home. Smartphones include acceleration sensors and may represent a promising and easily
accessible tool for this purpose. We performed an interventional feasibility study and compared
a smartphone-based approach with two standard gait analysis systems (force plate and motion
capturing systems). Healthy adults (n = 25, 44.1 &= 18.4 years) completed two laboratory evaluations
before and after a three-week gait and balance training at home. There was an excellent agreement
between all systems for stride time and cadence during normal, tandem and backward gait, whereas
correlations for gait velocity were lower. Balance variables of both standard systems were moderately
intercorrelated across all stance tasks, but only few correlated with the corresponding smartphone
measures. Significant differences over time were found for several force plate and mocap system-
obtained gait variables of normal, backward and tandem gait. Changes in balance variables over time
were more heterogeneous and not significant for any system. The smartphone seems to be a suitable
method to measure cadence and stride time of different gait, but not balance, tasks in healthy adults.
Additional optimizations in data evaluation and processing may further improve the agreement
between the analysis systems.

Keywords: gait; balance; training; biomarkers; motion capturing; smartphone; IMU; video-based;
home-based

1. Introduction

Gait and balance are impaired in aging, but also in various orthopedic and in particular
neurological disorders. This impairment is often associated with reduced walking speed,
increased gait variability or increased postural sway [1-3] and can lead to considerable
constraints in daily life (e.g., bradykinesia/akinesia and freezing of gait in Parkinson’s
disease [4], unstable and wide-based gait in ataxias [5,6]). Identifying and assessing these
constraints in daily life and providing suitable therapeutic (training) options such as
physiotherapy is highly important.
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There is an increasing demand to monitor physiological functions and disease-related
symptoms independent of the physical presence of the respective participants or patients
at the study site. Enabling study participation in a home-based setting, e.g., for human
physiological monitoring [7,8] or by using wearables as measurement devices for assessing
gait and balance [9,10], is an interesting and promising approach. Inertial measurement
units (IMUs) consisting of accelerometers, gyrometers and magnetometers are routinely
embedded in the hardware of smartphones. Due to their broad availability and the conve-
nient option to implement applications, they may provide an attractive hands-on tool for
measuring gait and balance in home-based settings. However, this set-up has been applied
only recently in the field of motion analyses [10,11] and is not yet part of the standard
clinical tools of measuring gait and balance.

Currently, the most commonly used instruments for gait and balance analysis are force
plates (pressure-sensitive walkways) and body-worn motion capturing (mocap) systems
based on IMU or optical data [12]. All these stationary systems allow the detection of
abnormal or altered gait patterns in various neurological disorders such as Parkinson’s
disease (PD, [13]), multiple sclerosis (MS) or ataxias [14]. Using force plates (GAITRIite,
5.1 m), it was shown that PD patients have a longer stride duration, a shorter stride
length and greater variability in both, compared to healthy controls [13]. In addition,
stride length and velocity were reduced in ataxia patients (force plate and body-worn
sensors; [14]). These gait analysis systems were also able to detect performance changes
after interventions. For example, Conradsson et al. [15] found improved gait velocity
and stride length in normal gait after a ten-week balance training in PD patients. They
measured normal walking with a GAITRite 9 m electronic walkway with and without
a cognitive task and used the averaged result of six trials. Similarly, Giardini et al. [16]
used the averaged results of four trials of normal walking at usual speed on a GAITRite
4.5 m electronic walkway and showed that two forms of physical exercise training (balance
exercises and mobile platform training) improved gait speed in patients with PD, whereas
only the balance exercises led to improved cadence and stride length.

Although the completion time of the Timed-Up-and-Go (TUG) test is used as a stan-
dard for quantifying functional mobility in a clinical context [17], electronic assessment of
balance has increasingly been used in research [18]. The most commonly used instrument
is a force plate (similar to gait analysis), however, an increasing number of technologies,
whose reliability and validity was described in Baker et al. [19], are being used on a regular
basis (e.g., inertial sensors). For balance tasks, center of mass or center of pressure data
are commonly used to determine the area of postural sway, path length and mean veloc-
ity [20,21]. Morenilla et al. [22] described altered sway areas and velocities in PD patients
when examining normal stance on a tri-axis force plate (Kistler). They found significant
increases in total sway area and in mean anteroposterior and mediolateral displacement for
PD patients. Moreover, Sun et al. [23] reported that both a new inertial body-worn sensor
and a force plate were able to discriminate between subjects with severe MS and healthy
control. However, only the force plate was able to distinguish subjects with mild MS from
healthy control and patients with severe MS. Studies using force plates were also able to
detect changes in performance after training interventions [24,25], i.e., patients with chronic
stroke showed improved sway distance after participation in a virtual reality reflection
therapy [26], and children with cerebral palsy showed decreased sway area and sway path
after 12 weeks of training with a gaming balance board [27].

Thus, these stationary analysis systems of gait and balance are obviously able to detect
performance differences between different groups in addition to shifts in performance
over time or after intervention. They stand out in terms of their accuracy and ease of use.
However, whether this also holds true for smartphone-based evaluation of gait and balance
is still a topic of intensive research. In contrast to force plates and whole-body IMUs, the
smartphone relies on a single sensor estimating velocity from acceleration and, in addition,
gravitational influences and high-frequency noise must be filtered out. The advantage
of smartphones would lie in their high disposability and saving of resources. Here we
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compared smartphone-based assessment of gait and balance tasks before and after three
weeks of training to two commonly applied stationary gait analysis systems. We evaluated
the feasibility of this approach to draw conclusions about the agreement of the three gait
analysis systems and their ability to detect changes after a training intervention.

2. Materials and Methods

In this interventional feasibility study, smartphone-based evaluation of gait and bal-
ance was combined with two common stationary gait analysis systems requiring a labo-
ratory environment: a zebris force plate and a Xsens mocap system with inertial sensors.
Overall, 25 participants were recruited into the study. Two applications (apps, “JTrack EMA”
and “JTrack Social”) were installed on the smartphones of the participants (screenshots
are available in Far et al. [28]). Both apps were developed at the Forschungszentrum
Julich [28]. JTrack EMA was developed for collection of ecological momentary assessments,
so that common clinical questionnaires can be easily implemented into the app. [Track
Social was developed for customizable gathering of sensor data, including accelerometer
information, using sensors embedded in any modern smartphone. Data were collected
during a three-week video-based training intervention, which was performed at home
and included twelve gait and balance training sessions, each lasting 20 min (see Figure 1).
Participants were asked to indicate how many of the training videos they performed in
total. Nevertheless, no verification of this information could take place. The present study
was a feasibility study of a combined assessment and training protocol for gait and balance
in healthy subjects. Written informed consent was obtained by all participants. The study
was approved by the ethics committee of the Psychology faculty of the Heinrich Heine
University Diisseldorf.

‘Measurement 1 Laboratory Gait/balance tasks + questionnaires ‘

|Questionnaires I [smartphone | Imotion capturing system I ’force plate |

‘Week 1 ‘ ‘ Training video 1-4 (each 20 min) |

IWeek 2 ‘ ‘ Training video 5-8 (each 20 min) ‘

‘Week 3 ‘ ‘ Training video 9-12 (each 20 min) ‘

‘ Measurement 2 Laboratory Gait/balance tasks + questionnaires ‘

|Questionnaires I ’smartphone I Imotion capturing system | ’force plate |

Figure 1. Overview of study design.

2.1. Participants

Twenty-five participants were recruited via notices at universities, supermarkets and
social media, and via newspaper. Participants had to be aged between 20 and 70 years,
needed to walk safely without a walking aid, and did not report joint problems (osteoarthri-
tis, endoprostheses) or other neurological, muscular or other medical problems affecting
gait (e.g., falls, deep brain stimulation).

2.2. Gait Analysis Systems

The following three gait analysis systems (see also Figure 2) were used for assessment
of gait and balance tasks in this study:

e  The zebris FDM force plate (4.24 m, zebris Medical GmbH, Isny, Germany, https://ww
w.zebris.de/en/medical/stand-analysis-roll-analysis-and-gait-analysis-for-the-prac
tice, accessed on 30 June 2022) with the Noraxon® myoPressure software (Noraxon
U.S.A,, Inc., Scottsdale, AZ, USA, https:/ /www.noraxon.com/our-products/myopres
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sure/, accessed on 30 June 2022). This uses capacitive pressure sensors to capture the
pressure distribution in gait and balance.

e  The Xsens mocap system consists of the MVN Awinda hardware and MVN Analyze
software (Xsens Technologies B.V., Enschede, The Netherlands, https:/ /www.xsens.co
m/motion-capture, accessed on 30 June 2022). It consists of 17 IMUs attached to each
distinctive segment of the body fixed with body straps, which record angular velocity,
acceleration, atmospheric pressure and the Earth’s magnetic field with a frequency of
60 Hz.

e Individual Android-based smartphones of the participants on which the JTrack So-
cial app was installed [28]. During all measurements, the accelerometer data of the
smartphone were recorded using this app. The smartphone was placed in a waist bag.

Waist bag with
smartphone

17 Xsens
sensors

Zebris force
plate

Figure 2. Representation of the three gait analysis systems used in the study.

2.2.1. Force Plate Feature Extraction

The zebris FDM force plate uses capacitive pressure sensors to capture the pressure
distribution in gait and balance. No preprocessing was performed on the force and pressure
data, which were recorded with a frequency of 100 Hz. Gait or balance reports are created
automatically in the Noraxon myoPressure™ software, by selecting “Report” — “Bilateral
Gait Report” for gait tasks and “Report” — “Stance Report” for stance tasks. The software
uses the vertical ground reaction force to determine gait phases such as the heel strike or
toe off. Movements in the beginning and at the end of the tasks that were not part of the
task were unselected for all tasks. Apart from this, the entire distance walked on the force
plate was included in the analysis. Feet positions were checked manually for tandem gait,
since the software frequently was not able to distinguish the order of the left and right feet
in this task. If foot positions were wrong according to the synchronized video, they were
switched manually (left feet contacts were exchanged for right feet contacts).

In the report, stride time (s) describes the time between two heel contacts on the same
side of the body. Cadence is the number of steps performed per second. The average
velocity calculated for the force plate is the average stride length divided by the average
stride time. Step width (cm) is the lateral distance between the center of the left and
right heel.
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2.2.2. Mocap System Feature Extraction

The Xsens mocap system computes the full-body motion based on constraints from a
biomechanical model of the human skeleton with the help of sensor fusion algorithms. To
configure the biomechanical model, body dimensions such as foot length, hip height and
shoulder width of each participant were collated. The attached IMUs of the system are
self-contained and light weight, so that they do not restrict subjects in their freedom of
movement. After placing the system on a participant, a calibration process was performed
as described in the MVN User Manual [29], i.e., to calculate the orientations of the sensors
with respect to the corresponding segments. Quantities regarding the accuracy of the
tracker and the MVN fusion engine can be found in the MVN User Manual [29]. A detailed
description of the system is given in Schepers et al. [30].

The data were recorded with the Xsens MVN 2020.2 software and stored in the mvnx
format after reprocessing in HD. A Python script was used to extract the position of the
pelvis and both feet (foot segments located between the ankles within the Xsens model, see
section 23.6.10 in the MVN User Manual [29]). The pelvis data were used to approximate
the center of mass (COM, sensor position at the lower back on top of the sacrum). Data are
given in the x-direction (anterior—posterior), in the y-direction (medial-lateral) and in the
z-direction (vertical). The definition of axes also applies to the data of the left and right foot.
The following procedures were separately repeated for each participant and each task.

Data were visualized to check for plausibility and to avoid including errors. Since the
data contained turns at the end and at the beginning (most anterior and most posterior
points, x-axis) of each lane, the first and last meters in the x-direction were excluded from
the data. Data were then split into separate lanes (6 lanes for normal gait, 6 lanes for
backward gait, 4 lanes for tandem gait) that every participant walked. IMU sensors showed
a drift after a few lanes of walking, resulting in a mismatch between the correct direction of
travel and the sensor-based detected direction of the x-axis as the main walking direction.
This was corrected by rotating the data within the moving plane (x—y) to maximize the
conformance between the walking direction and the x-axis. To calculate the time between
two consecutive steps of the participant (step time), the vertical component of the COM
data was used. As the COM moved up and down in cyclic movements, its peaks were
used as markers for a step cycle. The height to find the peaks (scipy.signal, find_peaks) was
adapted for each participant by visually checking the output plots. To avoid technical errors
and enable single step detection during the tandem gait, an individual minimum distance
between two consecutive peaks was required. The time between two steps (inter-step time)
was calculated by subtracting the times of two neighboring peaks.

The step frequency (cadence), defined as the number of steps per second, is the inverse
of the inter-step time.

Velocity as distance per time was calculated separately for each lane using the differ-
ence between the first and the last data point for position and time.

To calculate the lateral distance between both feet during steps (step width), the
vertical z-axis and the y-axis (medial-lateral displacement) of the feet were considered. The
time frame with the lowest foot position of each foot (mid-stance phase) was marked by
searching for the minima in the z-direction (vertical axis). Its position in the y-direction
at the same time frame was used to determine the distance between the left and right
feet. Height and width in the find_peaks function were again adapted individually for
each participant.

For the balance tasks, data import and inspection were performed in a similar way as
described for the gait tasks. For each participant, the time span for analysis was selected
in a way such that movements in the beginning or at the end of the balance task were
excluded. Analysis was performed on the pelvis data (COM). The total path length that was
traveled by the COM of the participant was calculated by summing the distance between all
successive points in the path within the moving plane (x-y). The sway velocity described
the number of millimeters the COM of the participant moved per second.
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The area of an ellipse around the COM path was calculated by multiplying the antero-
posterior sway and the mediolateral sway with pi.

2.2.3. Smartphone Feature Extraction

The JTrack Social app was installed on the individual Android-based smartphones of
the participants and placed in a waist bag during the measurement (placed at the lower
belly to approximate the COM while also ensuring simple handling).

All analyses of the JTrack Social app data were performed in MATLAB. The ac-
celerometer data for each smartphone were recorded using the highest frequency pro-
vided for the respective smartphone (the recorded frequencies ranged between 100 and
252 Hz). All recorded gait and balance data were visually quality checked by removing
non-tasks and, where identifiable, turn periods from the recordings. For normal gait
data, manual step labeling was performed to obtain reference data for automated step
labeling using a dedicated open-source MATLAB toolbox implemented for that purpose
(https:/ / github.com /juryxy/step_detector, accessed on 30 June 2022).

All accelerometer data were band-pass filtered in the range of 0.8-20 Hz to remove the
gravitational component and the high frequency noise. Step detection for gait data was
performed using the findpeaks function on the Euclidean norm of the accelerometer data.
For this function, the following two parameters can be optimized for step detection—the
minimum peak height (further expressed as standard deviation (SD) relative to the mean
signal) and the minimum peak distance (in seconds). As the zebris FDM force plate was
able to directly capture steps using pressure sensors, it was considered as closest to the
ground truth together with the manually labeled data for normal gait. To identify optimum
parameter combinations for smartphone step detection, we performed a grid search for
the above parameters (peak height: 1.5 SD in steps of 0.1 to 3.0 SD; peak distance: 0.2 s in
steps of 0.02 to 0.44 s), testing for correlations between the mean stride intervals (MSIs)
obtained using these settings and MSIs derived using the ground truth provided by the
force plate and manual labeling (Figure A1, Appendix A). For normal and backward gait,
the optimum parameters providing the closest overall correlation to the ground truth were
a minimum peak height of 2.3 SD and minimum peak distance of 0.38 s. For tandem
gait, the optimum peak height was 2.7 SD and minimum peak distance was 0.42 s. Using
these optimum parameters for step detection, the following features were computed using
dedicated MATLAB scripts: stride time, cadence and velocity. To compute the mean
velocity, we performed a step-wise double integration of accelerometer data to velocity and
displacement using the first point as a reference. Thereby, the above band-pass filter was
re-applied at each step to ensure that the residual gravitational and potential reintroduced
high-frequency effects were removed from the data. Mean velocity (in m/s) was then
computed as distance covered during the gait tasks divided by time.

For stance tasks, accelerometer data were transformed into displacement. The gravita-
tional and high-frequency components were removed from acceleration and displacement
data using band-pass filtering as for the gait tasks. Mean velocity was computed as point-
by-point displacement divided by time. As the smartphone had no specific fixation of the
phone orientation (except for a waist bag), the orientation of sensors with respect to the x-
and y-plane differed across phones. To obtain an estimate of postural sway, we therefore
performed a principal component analysis to determine the main directions of the sway
in the three-dimensional space. The ellipsoid volume encompassing the 95% confidence
interval of all points across the three principal components was computed as an estimate of
postural sway around the COM (Figure A2, Appendix A).

An additional app, the JTrack EMA app (Biomarker Development, INM-7,
Forschungszentrum Jilich), was used for the retrieval of questionnaires.
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2.3. Study Tasks
2.3.1. Gait and Balance Tasks

For all gait tasks, participants were asked to walk safely across the force plate, then
turn around behind the plate and walk back to the starting position. The walks were
repeated several times with the number of iterations varying between tasks (for details see
Table 1). For tandem gait, participants walked in a straight (imaginary) line by placing one
foot in front of the other, placing the heel of one foot about a hand’s width in front of the
toes of the previous foot to enable separate foot detection by the force plate software. In
the balance tasks, the participants were asked to keep their balance for as long as possible
without leaving their position or holding up (maximum of 30 s). Participants performed all
tasks without wearing shoes.

Table 1. Gait and balance tasks.

Task Content
Normal gait (NG) 10 m x 4.24 m normal (forward) gait
Backward gait (BG) 6 m x 4.24 m backward gait

4 m x 4.24 m tandem gait (walk on one line

Tandem gait (TG) placing one foot in front of the other)
Narrow stance (NS) Balancing in a narrow stance (feet close together)
Tandem stance (TS) Balancing in a tandem stance (feet in one line)
Narrow stance with eyes closed (NSEc) Balancing in a narrow stance with eyes closed
Single leg stance (SS) Balancing on one leg

2.3.2. Questionnaires

Age, gender, body height, body weight, profession and years of education were
retrieved in a demographic questionnaire during the first laboratory visit. To assess de-
pression and anxiety, the German versions of the depression module of the patient health
questionnaire (PHQ-9 [31], German version: [32]) and the hospital anxiety and depression
scale ([33], German version: HADS-D [34]) were used. Additionally, general habitual
well-being (FAHW [35]) and self-efficacy, optimism and pessimism (SWOP-K9 [36]) were
assessed. To assess self-efficacy in relation to falls, the (modified) German version of the
Activities-Specific Balance Confidence scale was used (ABC-D [37]).

The “PHQ_stress” and “PHQ_depression” subscores were selected from the PHQ-9
questionnaire. Although the depression and anxiety variables were used as exclusion
criteria, the stress variable ranged from 0 to 20 and served as a covariate to describe the
population. The anxiety subscore of the HADS-D had a cut-off value of >10 points and
a depression subscore of >8 points. In the FAHW score, a total score of 38 to 50 or 35 to
47 (men and women, respectively) was defined as “average” according to the authors of
the questionnaire. Additionally, the score contains a row of “smiley” icons, ranging from
a happy face to a sad face. This was included in the evaluation by assigning a 1 to the
happiest smiley and a 7 to the saddest smiley. The SWOP-K9 questionnaire contained
items on self-efficacy (SWOP-SE), optimism (SWOP-OP) and pessimism (SWOP-PS), with
scores ranging from 5 to 20, 2 to 8 and 2 to 8, respectively. For the ABC-D questionnaire,
the scale was adapted to a 4-point response scale (not confident at all, somewhat less
confident, somewhat confident, absolutely confident) so that a score between 16 (maximum
confidence) and 64 (minimum confidence) could be achieved.

2.3.3. Training at Home

Gait and balance training was performed four times per week for 20 min by in-
struction via provided videos. The videos were produced by a physical therapy practice
(PhysioStiitzpunkt, Kéln, Germany) and uploaded to Vimeo (https://vimeo.com/, ac-
cessed on 30 June 2022). In each video, an experienced physiotherapist explained and
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demonstrated various tasks to improve gait and balance and instructed the participants to
follow along. This included strength training, coordination training, stability training and
mobility. The twelve videos progressed from simple to more demanding tasks and also
included suggestions to reduce or increase the level of difficulty. Videos could be paused
or repeated at any time, but participants were instructed to perform each training session
only once until their second study visit was completed.

2.4. Statistical Analyses

From the set of extractable variables of each gait analysis system and each gait task,
three variables were selected that were consistently available across all systems (see Table 2):
Gait velocity (average velocity across all straight distances covered in the task, measured in
meters per second), stride time (average duration of one stride defined as two consecutive
steps in seconds) and cadence (average number of steps that are performed within one
second). Additionally, step width was extracted from the force plate gait report and from
the mocap system data, as this is an important variable to detect abnormal gait patterns
(e.g., broadened base of support in cerebellar ataxias, see [3]). However, the step width
cannot be derived from the acceleration data of the smartphone and was therefore not
extracted from the smartphone data. For the balance tasks, the center of mass (COM) sway
area (area of an ellipse enclosing all data points in the x- and y-direction) and the velocity of
the COM (average distance in millimeters that the participant traveled per second) were
chosen. These two variables showed good reliability in previous studies (e.g., [38,39]) and
are commonly used for examining balance performance [20,21,40]. Both variables were
available for all three gait analysis systems.

Table 2. Overview of gait and balance variables of all gait analysis systems used for statistical

analysis.
Output Variable Description Unit
Stride time Time to complete one stride (two steps) s

Cadence Number of steps per second 571
Gait Velocity Speed of movement m/s

Step width * Lateral distance of left and right foot (center of heel) m

at one step
. o Ellipse, enclosing 95% of all data points (100% in the
COM elqu)(s)i ::jzr(telflllgsz)ld volume mocap system) during a stance task (mediolateral mm? (mm?)
Balance P and anteroposterior displacement)

Speed of movement during a stance task

COM velocity (mediolateral and anteroposterior displacement)

mm/s

* not obtained with the smartphone.

Correlations between the questionnaire scores, between the individual variables within
one gait analysis system, and between variables in all gait analysis systems, were calculated
with the Pearson correlation coefficient. In this context, a correlation between 0.10 and
0.39 was described as weak, 0.40 to 0.69 as moderate and 0.70 to 1.00 as strong [40].
To analyze changes over time between the questionnaire scores and gait and balance
variables at the first and second study visit (T1 and T2), either an ordinary paired-sample
t-test was performed if the data scores were normally distributed, or a Wilcoxon rank
test, if the data were not normally distributed. For all statistical analyses, a p-value of
<0.05 was considered significant. Since results were corrected for multiple comparisons
using a Bonferroni correction, the resulting p-values of <0.013 (force plate, mocap system)
and <0.017 (smartphone) were considered significant when reporting changes over time.
Boxplots of all gait and balance variables were checked and extreme outliers were excluded
(>3 * IQR above quartile 3).
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3. Results
3.1. Participants

A total of 25 participants (age 44.0 + 18.4 years) took part in the first study visit (T1,
52% female, 92% right-handed, see Table 3). One participant had missing data from the
mocap system due to technical problems.

Table 3. Demographic information of all participants (1 = 25). Education included school years plus
years up to the highest graduation achieved (e.g., German Abitur equals 12 years of education). The
HADS-D anxiety score had a cut-off value of >10 and the HADS-D depression score had a cut-off
value of >8. The PHQ stress score had a maximum of 20 points.

Mean + SD Range (Min.-Max.)
Age [years] 4414+ 184 20-71
Body height [em] 172.3 £9.9 154-193

Body weight (n = 17) [kg] 67.6 £14.2 43-97

Education [years] 152 +£3.2 10-25
HADS-D Anxiety [score] 33+28 0-9
HADS-D Depression [score] 26126 0-10
PHQ Stress [score] 28+2.1 0-8

For the second study visit, four participants dropped out (injury independent of the
study (one), technical difficulties (one) and time constraints (two)). This led to a sample
of 21 participants at T2 with an average age of 44.7 £ 19.4 years (57% female, 95% right-
handed). All subjects reported having performed each of the training videos (12/12).

All demographic variables and questionnaire scores except the ABC-D score were nor-
mally distributed. Because one participant showed a depressive mood (HADS-depression
score 10), all analyses were conducted with and without this subject. Since results did not
differ, data from this participant were not excluded from further analyses.

Of the gait and balance variables, 8 of 33 gait variables were not normally distributed
and 21 of 24 balance variables were not normally distributed. Accordingly, non-parametric
statistical tests were selected for these variables. For detailed specifications of the variables,
please see Table A2 (Appendix A).

3.2. Questionnaires

No differences between the questionnaires obtained at both study visits were found
between T1 and T2 (Table 4, p > 0.09).

Table 4. Descriptive statistics of the questionnaire scores at the first and second study visit (T1, n = 25,
and T2, n = 21). SE = self-efficacy (possible range: 5 to 20), OP = optimism (possible range: 2 to
8), PS = pessimism (possible range: 2 to 8). Activities-Specific Balance Confidence scale (ABC-D,
possible range: 16 to 64), general habitual well-being (FAHW, average reference values between
35 and 50, smiley score ranging from 1 to 7).

T1 T2

Questionnaire Range Range
[Score] Mean £ 5D (Min.-Max.) Mean £ 5D (Min.-Max.)

SWOP-SE 3.080 = 0.49 2.0-3.8 3.229 £ 0.4485 2.2-4.0

SWOP-OP 3.240 £ 0.631 2.0-4.0 3.119 £ 0.7891 1.5-4.0

SWOP-PS 1.740 & 0.614 1.0-3.0 1.667 + 0.7130 1.0-3.0

ABC-D* 17.96 +2.574 16-28 17.76 + 2.343 16-24

FAHW 59.12 + 16.821 21-83 54.55 + 25.310 —5-86

FAHW Smiley 2.04 £ 0.611 1-3 2.25 £ 0.786 1-4

* The ABC-D scores were not normally distributed. A Wilcoxon rank test was performed.
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3.3. Gait and Balance Performance
3.3.1. Conformity of the Systems

Significant correlations between corresponding gait variables (stride time, cadence,
velocity) across the three systems were present during all gait tasks. For the velocity
variable during the backward and tandem gait, the correlations involving the smartphone
were weak and did not all reach significance; correlations for the other two variables
were significant.

For normal gait (Table 5), strong correlations were found between the three corre-
sponding gait variables (stride time, cadence, velocity) of the force plate, mocap system
and smartphone, except for one moderate correlation of velocity between the mocap sys-
tem and smartphone. Step width was moderately correlated between the force plate and
mocap system.

Table 5. Between-system correlations for normal gait between the force plate, mocap system and
smartphone at T1 (first measurement time). Correlation after Pearson.

Normal Gait Fo(:lcci Iz’:l;te Moizp_sz);s)tem F(E;Ci E:la)te
@ Stride time 0.977 ** 0.962 ** g Stride time ~ 0.981 **
% Cadence 0.942 ** 0.934 ** % Cadence 0.992 **
é Velocity 0.705 ** 0.648 ** % Velocity 0.925 **
S
0 Step width = Step width 0.430 *

* Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2-tailed).
n = number of participants included in the analysis.

For backward gait (Table 6), strong correlations were found between the stride time
variables of all systems and for cadence between the force plate and smartphone. The
remaining correlations regarding cadence and velocity were moderate or even showed no
correlation for velocity between the mocap system and smartphone.

Table 6. Between-system correlations for backward gait between the force plate, mocap system and
smartphone at T1 (first measurement time). Correlation after Pearson.

Backward Gait Fo(:‘:e:: lz’éa;te Moi;:p:Sz);s)tem F(g:z z};;te

v Stride time 0.936 ** 0.706 ** 5 Stride time  0.731 **
% Cadence 0.919 ** 0.685 ** % Cadence 0.687 **
3 Velocity 0.508 * —0.019 %‘ Velocity 0.453 *
% Step width 20 Step width 0.361

* Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2-tailed).
n = number of participants included in the analysis.

For tandem gait (Table 7), correlations were again strong between stride time and
cadence variables across all three systems. However, for velocity, only moderate correlation
was found between the force plate and the mocap system, but not between the smartphone
and the two standard systems.

For balance tasks, moderate to strong significant correlations were found between the
corresponding variables of the force plate and mocap system (see Table 8). For smartphone
data, only three variables reached statistical significance (moderate correlations between
the ellipse variables in tandem stance and the velocity variables in narrow stance with eyes
closed between the force plate and smartphone, and a moderate correlation between the
velocity variables in single leg stance between the mocap system and smartphone).
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Table 7. Between-system correlations for fandem gait between the force plate, mocap system and
smartphone at T1 (first measurement time). Correlation after Pearson.

Tandem Gait Force=: 11’17a)te (n Moc(ralp=81);s)tem F(::,Ci Il’gte
v Stride time 0.875 ** 0.899 ** 5 Stride time ~ 0.901 **
g: Cadence 0.794 ** 0.869 ** % Cadence 0.861 **
5 Velocity 0.149 0.365 %“ Velocity 0.618 **
UE) Step width 20 Step width ~ —0.150

** Correlation is significant at the 0.01 level (2-tailed). 7 = number of participants included in the analysis.

Table 8. Between-system correlations for the stance tasks at T1. Cor. = correlation after Pearson.
NS = narrow stance. TS = tandem stance. NSEc = narrow stance with eyes closed. SS = single leg
stance. The number of participants included in each analysis varied between 14 and 24.

Force Plate  Mocap System Force Plate
N Ellipse —0.072 0.093 N Ellipse 0.697 **
t t
ATOWSIANCE ™ Nelocity 0.186 0.190 ATOWSIANCE ™ Nelocity 0.673 **
o Ellipse 0.550 * 0.315 g Ellipse 0.483 *
Tandem stance ; & Tandem stance ;
% Velocity 0.008 0.123 = Velocity 0.468 *
El Narrow stance Ellipse 0.120 —0.058 = Narrow stance Ellipse 0.782 **
|9}
c% eyes closed Velocity 0.580 * 0.210 § eyes closed Velocity 0.752 **
Single leg Ellipse 0.453 0.479 Single leg Ellipse 0.672 **
stance Velocity 0.243 0.528* stance Velocity 0.706 **
* Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2-tailed).
3.3.2. Reference Values
To put the outcome values of the gait tasks in context, reference values from the
literature are given in Table 9.
Table 9. Overview of values of gait variables found in the literature versus results of this study. A
value description is given, unless values are mean =+ SD.
Literature Own Results
(Force Plate,
Values System Reference Mocap System,
Smartphone)
1.16 (0.92-1.41) (median . .
(5th-95th percentiles)) zebris force plate Pawik et al., 2021 [41]
stride time [s] X " 1.18,1.20 and 1.20
. asovic et al.,
1.09 + 0.08 zebris force plate 2020 [42]
1.83 £0.17 zebris force plate Kasovic et al,
- cadence [steps/s] 2020 [42] 1.66,1.70 and 1.67
ED 1.72 +£0.17 GAITRite force plate Rao et al., 2011 [43]
]
g ] 1.25+0.14 zebris force plate Kasovic et al,
Z velocity [m/s] 2020 [42] 0.98,0.97 and 1.18
0.94 + 0.25 GAITRite force plate Rao et al., 2011 [43]
. Kasovi¢ et al.,
11.65 +2.85 zebris force plate 2020 [42]
step width [em] 513 (usual walking base) Whittle, 2007 [44] 11.64 and 10.6

11+4 GAITRite force plate Rao et al., 2011 [43]
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Table 9. Cont.

Literature Own Results
(Force Plate,
Values System Reference Mocap System,
Smartphone)
. . . Gimunova et al.,
stride time [s] 1.2+0.1 zebris force plate 2021 [45] 1.22,1.21 and 1.23
- . Gimunova et al.,
g cadence [steps/s] 1.68 £0.15 zebris force plate 2021 [45] 1.66, 1.66 and 1.67
el
< . p
§ 0.87 = 0.12 zebris force plate Glmzl(l)rzl(l)‘a;t al.,
S velocity [m/s] Edwards ot ol 0.69, 0.66 and 0.55
m . wards et al.,
0.98 £0.23 GAITRite force plate 2020 [46]
step width [cm] 16.8 + 4.87 zebris force plate Gimunova etal, 18.08 and 11.86
2021 [45]
0.8 & 0.05 (estimated zebris ultrasound Kronenbuerger et al.,
- mean + SD at
= system 2009 [47]
50 cadence [steps/s] 1 km/h speed) 1.23,1.19 and 1.23
_ci) 0.87 + 0.29 GAITRite force plate Rao et al., 2011 [43]
ES velocity [m/s] 0.27 £0.13 GAITRite force plate Rao et al., 2011 [43] 0.45, 0.4 and 0.20
step width [cm] 35+26 GAITRite force plate Rao et al., 2011 [43] 2.24 and 2.44

3.3.3. Differences over Time—Force Plate

Since not all variables were normally distributed, p-values either refer to t-tests (no
indication) or to Wilcoxon-rank tests (indicated by “(W)”).

For normal gait, a significant difference was found in all variables between T1 and
T2: stride time (p = 0.003, Figure 3A), cadence (p = 0.002, Figure 3B), velocity (p = 0.002,
Figure 4A) and step width (p(W) = 0.004, Figure 4B). For the backward gait, only the
velocity variable (p = 0.005, Figure 4A) remained significant after correcting for multiple
comparisons. For tandem gait, none of the variables remained significant after correcting
for multiple comparisons.

For the stance tasks, none of the variables remained significant after correcting for
multiple comparisons (Figures 5A and 4B).

The exact values for all tasks and gait analysis systems are reported in Table Al,
Appendix A.

3.3.4. Differences over Time—Mocap System

In contrast to the force plate, a significant difference in normal gait was found in only
two of four variables: stride time (p = 0.002, Figure 3C) and cadence (p = 0.001, Figure 3D).
For the backward gait, only the velocity variable (p = 0.007, Figure 4C) remained significant
after correcting for multiple comparisons—similar to the results of the force plate. For the
tandem gait, a significant difference was found for two of four variables: for the stride
time (p = 0.003, Figure 3C) and the cadence (p = 0.001, Figure 3D). No significant effect was
found for the step width (Figure 4D); however, this may be related to the initial calibration
procedure: the closer the participants’ feet were in the “neutral position”, the smaller the
absolute values of the step width were in the later analysis.

Similar to the force plate, the mocap system analysis did not reveal a significant
difference between T1 and T2 for any of the stance tasks.
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Figure 3. Graphical representation of the mean values of stride time and cadence for all three

gait analysis systems at T1 and T2 (before and after training). Significant differences over time
(after Bonferroni correction) are highlighted by an asterisk. BG = backward gait, NG = normal gait,

TG = tandem gait.



Sensors 2022, 22, 4975 14 of 28
A Velocity force plate Step width force plate
25
2.0
20
1.51 i
5 o B4
E s Time f ° Time
& =
2 T =Ry T BT
8 a =P % =R P!
[ L o 104
> 2 @
L 4 : > -
0.5 -
r g N
+
1) -
* * < * s S \:;
0.0
: : : 0 . ’ '
NG BG TG NG BG TG
C Velocity mocap system Step width mocap system
25
2.0
20+ -
1.54
7 =
] .
E Time f e Time
2 B 3 B
G 1.0 -
8 ¢ [=]R7] z =] 7]
s o £ 109
"
0.5+
L J 51
*
0.0-
+ ' ! 0 ' ' '
NG BG TG NG BG TG
E Velocity smartphone
N p
2.0 R
o | X1
o
1.5 &
™ ©
Q
E @ Time
% 1.0 7o m b
2 ° =Ry
[ Pe %
> o e
/ >
*
0.5+ ) -
L
0.0- *

Figure 4. Graphical representation of the mean values of velocity and step width for all three
gait analysis systems at T1 and T2 (before and after training). Significant differences over time
(after Bonferroni correction) are highlighted by an asterisk. BG = backward gait, NG = normal gait,

TG = tandem gait.
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Figure 5. Graphical overview over the balance variables (center of mass ellipse area and velocity) in all
three gait analysis systems at both measurement times (first measurement, T1, second measurement,
T2). COM = center of mass, NS = narrow stance, TS = tandem stance, NSEc = narrow stance with

eyes closed, SS = single leg stance.

3.3.5. Differences over Time—]JTrack Smartphone Platform

In contrast to both the force plate and mocap systems, none of the variables of nor-
mal gait, backward gait or tandem gait remained significant after correcting for multiple
comparisons (Figures 3E,F and 4E). Compared to the other gait analysis systems, the smart-
phone had a much higher variability of the velocity values, e.g., velocity values of the
backward gait at T1 were 0.69 £ 0.09 m/s for the force plate and 0.55 & 0.43 m/s for the

smartphone (see Table A1, Appendix A).
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Similar to both the force plate and mocap systems, the smartphone analysis showed
no significant differences between T1 and T2 for any of the stance tasks (Figure 5E,F).

4. Discussion

Here, we performed an interventional feasibility study and compared three systems for
the monitoring of home-based gait and balance training in healthy adults. In particular, we
assessed the applicability of smartphone-based data collection in comparison to standard
methods and the capability of the methods to detect performance changes after training.

4.1. Conformance of the Three Gait Analysis Systems

Gait variables obtained with both standard analysis systems (force plate and mocap)
showed moderate to strong intercorrelations, except for step width. However, the strength
varied depending on the performed gait task with excellent correlations for normal gait.
Step detection during backward or tandem gait was more challenging and error-prone
compared to normal gait, since feet were placed more cautiously and slowly, resulting in
lower force and acceleration values, in addition to atypical movement patterns. In line
with this, step width values correlated moderately between both systems for normal but
not for backward gait. For tandem gait, the correlation between the step width values of
both systems even revealed negative values, due to the calibration process of the mocap
system [29]: if participants placed their feet in a very narrow stance during the “neutral
position”, required for the calibration process, the absolute values of the step width were
much lower in the later analysis. This led to incorrect lateral positions of the feet and even
to negative step width values in the tandem gait. For future studies using mocap systems,
a standardized stance position of the participants is therefore highly recommended.

The JTrack based smartphone evaluation using accelerometer data showed strong
correlations for the stride time and cadence variables of all gait tasks with both standard
systems. Velocity, however, showed only moderate to strong correlations for normal and
backward gait, and weak correlations for tandem gait. Taken together, all three gait analysis
systems showed excellent agreement during normal gait, followed by the tandem gait task
and a substantially lower agreement for the backward gait task. The agreement was better
for the gait variables of stride time and cadence than for velocity. The less accurate velocity
estimation via smartphone relied on a single sensor estimating velocity from acceleration
using the first recorded value as a reference. As this first value was not calibrated in our
study (i.e., no fixed position was taken of the phone when recording started), this may
lead to biases in estimation of the initial velocity. It also explains the lack of correlation
with other systems for tandem gait, for which the velocity was substantially lower, thereby
increasing the impact of noise.

The strong correlations of smartphone-based gait variables with standard gait analysis
systems found in our study are in contrast to Steins et al. [48], who described only moderate
agreement between an iPod touch and an Xsens sensor when investigating the reliability
of inertial sensors of smart devices during normal gait in healthy adults. Nevertheless,
other studies suggested that smart devices are an acceptable method for assessing gait in
rheumatic patients [49] and have the potential for future use in the clinic [13].

The stance variables of ellipse area and velocity showed moderate to strong correla-
tions between the two standard force plate and mocap systems (see Section 3.3), in spite
of large differences in the absolute values obtained with these methods (see Table A2,
Appendix A). In contrast, only weak to moderate correlations were found between the
smartphone and both other systems. This might be due to specific aspects of data acqui-
sition and analysis. Force plates can directly register the foot print and determine the
respective variables from position data. In contrast, the smartphone uses accelerometer
information with respect to the first recorded value and thus only infers position data
through double integration. Thereby, gravitational influences and high-frequency noise
must be filtered out using band-pass filtering, which may lead to additional biases in
position estimation. The mocap system uses multiple sensors, e.g., directly on the feet,
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and, in addition to the accelerometer data, also considers angular velocity, atmospheric
pressure and magnetic field data, and a biomechanical model. This contrasts with the
smartphone analyses, which relied on a single sensor near the COM. This enables the
mocap system to determine the positions of the sensors relative to one another and to better
estimate the gravitational and the noise components. Since the position and orientation of
the smartphone were not fixed when recording started, the initial estimates may be biased,
affecting all derived measures. Moreover, as the three axes in space were not fixed, it is
difficult to determine an area in mm? in a standardized manner. Accordingly, the ellipse
volume was computed in mm?3, introducing an additional source of variation.

Taken together, stride time and cadence seem to be variables that are robust to mea-
surement with a smartphone, whereas other gait and stance variables are subject to some
limitations.

4.2. Questionnaires

Since physical activity has a significant impact on mental well-being and vice versa,
the objective motor assessment in this study was accompanied by a set of questionnaires
addressing different aspects of subjective participant-reported outcome measures (e.g.,
depression- and anxiety-related symptoms, general well-being, stress, self-efficacy, opti-
mism, pessimism and balance confidence).

Contrary to our expectations, the questionnaire scores did not differ between the
pre- and post-training study visits. Physical therapy or exercises can reduce fatigue and
improve one’s emotional life [50] and mental health, in a manner that is even similar to
psychotherapy. By comparison, our participants already had above-average FAHW scores
at their first visit (reference values are given in [35]), indicating that the general well-being
was already at a high level before the training and hence left less room for improvement.

Due to several constraints (study duration, compliance), a three-week period was
chosen as the training interval in this study. Although Mikkelsen et al. [51] reported that
exercising for 15 min three times per week already reduced depressive symptoms, most
studies chose a longer time period for the training program or a longer duration for each
unit to maximize the effectiveness of balance training and to prevent falls [52,53]. In the
more specific context of home-based training, the highest effectiveness of video-based
rehabilitation programs was found after at least four weeks [54]. Nevertheless, although a
higher training volume or frequency can lead to better training results, it may also reduce
compliance, as the subjective cost may exceed the perceived benefit of the training. In
Haines et al. [55], a drop in compliance was found after three weeks. In our study, all
subjects reported having performed each of the training videos, but verification of this
information was not possible, impeding a valid statement regarding compliance.

4.3. Gait Performance

Mean values of stride time, cadence, velocity and step width obtained in our study
were comparable to those found in the literature for normal gait in healthy adults (see
Table 9). Similarly, stride time and cadence values during backward gait were comparable
between the literature [45] and between all three gait analysis systems. However, in
our study, velocity values were 20-60% lower during backward gait compared to the
literature ([45,46] measured on force plates). For step width, force plate values during
backward gait were in line with the literature [45], whereas the mocap system values
were lower (~29%), which is likely related to the calibration, as mentioned in Section 4.1.
For tandem gait, Kronenbuerger et al. [47] reported lower cadence values in tandem gait
compared to our study (~34%, see Table 9), but they used a different study setting with
predetermined gait speed. Rao et al. [43] used a force plate in healthy older adults (mean
age 84 years) and also found slightly lower values for cadence, velocity and step width
in the tandem gait compared to our values, likely related to the age difference between
both cohorts. Importantly, in a tandem gait, the heel of one foot is normally placed directly
in front of the toes of the other foot. In our study, a hand’s width of space had to be left
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between the feet to allow the force plate to distinguish between both feet. This difference
may explain the higher cadence and velocity values found in our study.

There were significant improvements for some of the variables between the pre- and
post-training study visits. For normal gait, the force plate analysis revealed improvement
in all gait variables after training, whereas the mocap system only revealed an improve-
ment in two variables after training (stride time, cadence) and the smartphone did not
show a significant improvement. For backward gait, an improvement was shown for the
velocity variable of both force plate and mocap systems. For tandem gait, an improvement
after training was found for the two variables of stride time and cadence in the mocap
system only.

In the best case, all systems would have shown significant changes over time in
the same variables. However, the differences between the systems may result from (a)
reduced statistical power due to a lower number of valid values included in the statistical
analysis (as for the smartphone data), and (b) higher variability observed for smartphone
data; both of which affect the outcome of the statistical tests. Regarding the two standard
systems, the force plate detected more changes in normal gait over time in healthy adult
subjects undergoing a training period of three weeks. By comparison, only the mocap
system detected changes in tandem gait. One reason for these differences could be that
the hardware and software used for the force plate are more accurate for normal walking
(because it uses position data, see Section 4.1), but had difficulties distinguishing right and
left feet in the tandem gait, whereas the manual detection of steps in the tandem gait was
more controllable in the mocap system analysis. Nevertheless, a general improvement in
gait variables was observed across all gait analysis systems.

The observed improvements were expected and desirable changes in terms of im-
proved gait performance after a training intervention, and have also been described in
several patient studies with various disorders such as PD [15,56] and stroke [57], or for
healthy (mostly older) adults after different kinds of training [58-62].

Of note, the observed improvement between pre- and post-training visits is most
probably caused by the training performed between these visits. However, a control group
undergoing the measurements at T1 and T2 without any training in the interim was missing
and, therefore, a learning effect cannot be entirely excluded. To confirm and substantiate
the positive effects of this study, further investigation, including a control group, would be
reasonable in future.

4.4. Balance Performance

For normal stance, mean values of balance performance (ellipse area) measured with
a force plate were comparable with corresponding values of healthy adults in the liter-
ature [20,63]. Although, for narrow stance, the velocity values of our study were also
comparable or slightly higher than the values of the studies cited above, the values for
the ellipse area differed. This is most likely due to methodological differences regarding
the calculation of this variable, which is not specified in the studies mentioned above. Po-
marino et al. [63] mentioned, however, that their balance measures were averaged over the
recording time. In our study, averaged ellipse area values for normal stance were 24 mm?,
50.7 mm? and 3.3 mm? (force plate, mocap system and smartphone, respectively), which
again is comparable to or slightly lower than in the studies by Nusseck and Spahn [20] and
Pomarino et al. [63], who measured with force plates.

For the other stance tasks, reference values for healthy adults in the literature are
scarce. One study reported an ellipse area of 138 mm? for the single leg stance in a control
group of older adults [64], whereas we found values of 878 mm?, 3860 mm? and 384 mm?
in our study (averaged values per second: 29 mm?, 129 mm? and 13 mm?). However, it
is unclear if the values were indeed averaged in the cited study. If so, the values in our
study were lower compared to those in the literature, possibly due to a lower mean age
of the participants. Values for the velocity balance variable were only reported separately
for mediolateral and anteroposterior directions [64] and are thus not comparable to our
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values. Terra et al. [38] examined the same stance tasks we used in PD patients, using a
force plate, and described an increase in the values for the COM ellipse area and velocity
with the level of difficulty of the respective stance tasks, ranging from narrow stance to
narrow stance with eyes closed, followed by tandem stance and, finally, single leg stance.
This is consistent with our results regarding the velocity variable obtained with the force
plate, whereas, for the other systems, the order of the stance tasks varied (see Figure 5).

Regarding the training effects, the statistical analysis did not show a significant im-
provement in balance performance between pre- and post-training measurements from T1
to T2 (see Figure 5). In contrast to the gait tasks, where small improvements in performance
were observed for all variables (even though not always reaching statistical significance),
the pattern of observed changes in stance tasks was more heterogeneous (see Table Al,
Appendix A). In contrast, an improvement was reported in the literature for different
patient groups, e.g., for PD patients [65] or for children with cerebral palsy [21,27] and
healthy older adults [66], and for younger adults [67] after a training intervention. Cadore
et al. [68] also summarized in their review that most balance trainings in older adults with
physical frailty led to enhancements in balance. However, methods, outcome measures
and training interventions were highly heterogeneous among the cited studies, impeding
their comparability.

4.5. Summary

Agreement between the three gait analysis systems was higher for gait variables than
for balance variables. With the exception of the step width variable, both standard methods
showed an excellent agreement between the values of the analyzed gait variables, especially
for the normal gait task, followed by tandem and backward gait tasks. In particular, for the
stride time and cadence variables, values obtained with the smartphone showed a strong
correlation with values obtained with both standard systems, whereas correlations for the
gait velocity variable were considerably weaker, especially for tandem and backward gait.
Improvements (by percentage change) were consistently visible across all gait tasks and
all three applied gait analysis systems. However, significant changes over time were only
found for gait variables obtained from the force plate and mocap systems. In contrast,
changes in balance variables over time yielded a highly heterogeneous pattern without clear
improvement across stance tasks and applied systems. Furthermore, participant-reported
outcome measures did not reveal any changes over time, which may be due to the already
high level of “general well-being” at the study onset.

According to the results of our research, there is a high level of agreement between
the devices used in the laboratory and smartphones. This finding is consistent with the
findings of earlier studies [69,70]. The fact that smartphones and smartwatches can be put
to use in everyday settings is the primary advantage of using such devices. Because of this
capability, patients can be monitored in (near) real time and over extended time periods
such as months and years. In addition, the vast number of people who own smartphones
makes it possible to use these devices as an excellent source for crowdsourcing, regardless
of the physical location of the users. However, there are additional considerations such as
misunderstanding and following of instructions, effect of motivation, learning effects and
misplacement or orientation of devices for at-home usage settings and self-administered
protocols, both of which have the potential to affect the validity and reliability of the data
collected [71].

Since improvements were found only for gait performance, the applicability of smart-
phones as a measurement system seems to be particularly useful in disorders in which
the gait is impaired, such as PD and ataxia [13,14]. Stride time and cadence measured
with the smartphone were found to have a high agreement with the measurements of
the standard analysis systems and are variables that differentiate patients from healthy
controls [13] or that might improve after an intervention [15]. For this reason, they seem to
be eligible variables for future smartphone studies in home-based environments. Future
studies should investigate the most effective intervention program and should combine a
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longer time frame for exercise interventions with major efforts to maintain or even improve
study compliance.

5. Conclusions

Our analysis showed that measuring gait and balance performance in healthy adults
with wearable devices, such as smartphones, produced comparable results for the stride
time and cadence variables compared to measurements with standard gait analysis systems
such as the force plate or mocap systems, whereas results for gait velocity were less
convincing. Potentially, adjustments may have to be made in the data evaluation for the
calculation of velocity to achieve better agreement.

Although the positive influence of three weeks of gait and balance training on gait
performance in healthy adults was noteworthy, comparable improvements were found for
all three gait analysis systems in gait parameters. However, only the force plate and the
mocap systems were able to detect significant changes over time during the gait tasks. In
contrast to the motor performance, no improvement was found for the questionnaire scores.
To ensure that the improvement is indeed the effect of the training and not a test-retest
effect, a further study including a control group which does not take part in a training
intervention is required.

Reference values for gait and balance variables in healthy adults are currently scarce
in the literature. For future analyses, the number of comparable gait and balance variables
can be increased to obtain a more detailed overview of reference values of healthy adults
and to compare these values with patient data (e.g., patients with movement disorders).
Ellis et al. [13] also suggested that many more consecutive steps (e.g., more than 100 steps)
are required to reliably detect differences in gait performance. This is not possible when
using force plates with a limited length, but seems to be an interesting set-up for further
smartphone-based analyses.
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Appendix A
Appendix A.1. Gait Performance

In Table A1, values of all gait variables are displayed before training (T1) and after
training (T2) for all three systems. Significant differences in time were found for normal
gait (force plate). In detail, significant differences within the post-hoc test were found for all
variables within normal gait and two variables within backward gait (force plate); two vari-
ables within normal gait, one within backward gait and three within tandem gait (mocap
system); and two variables within normal gait and one within tandem gait (smartphone).

Table Al. Differences in mean between the first (T1) and second study visit (T2) for the gait variables
of all three gait analysis systems. The percentage change is indicated in “A %”. Bold font indicates
a significant difference in time (T1-T2, p < 0.013 for the force plate and mocap systems, p < 0.017
for smartphone) and bold plus italic font indicates a difference in time in the Wilcoxon rank test
(p <0.013/p < 0.017). Italic font indicates the implementation of a Wilcoxon rank test. An asterisk
marks all significant values in general. Min. = minimum, max. = maximum, SD = standard deviation.

[cm]

T1 T2 p A%
n Mean+ SD Range n Mean + SD Range
S“id[eslﬁme 25 1204013  097-155 20 1134010  091-1.29 0.003 * —6.15
[(;?edpes“fs‘i 25  1.70 + 0.17 1.30-2.08 20 1.80 +0.18 1.55-2.20 0.002 * 5.89
NG ‘
V[erilo/c;’iy 25  0.98 4+ 0.14 0.64-1.28 20 1.09 &+ 0.12 0.92-1.42 0.002 * 11.01
Stel[’cml]dth 25  11.64 + 2.60 7-16 20 10.65 %+ 2.50 7-15 0.004* —851
Strid[‘;]ﬁme 25 1.22 +0.13 1.04-1.56 20 117 +0.12 0.94-1.37 0.027 —4.01
[}
5 Cadence 25 1.66 + 0.16 1.32-1.92 20 1.73 +0.18 1.47-2.12 0.028 424
a. BG [steps/s]
g Velocity "
g 25 0.69 & 0.09 0.53-0.86 20 0.76 & 0.09 0.61-0.92 0.005 9.43
F [m/s]
Ster[’cmi]dth 25  18.08 + 3.19 10-24 20 1745 +3.20 12-24 0.203 —3.48
Stﬂd[’;]ﬁme 20 1.66 + 0.31 1.19-2.44 19 1614035  1.00-2.44 0.031 293
[Csfj}fsf}csﬁ 21 1234024 068168 19 1334026  0.85-2.02 0.019 8.59
TG :
V[erf/cgy 21 0.4540.12 0.22-0.72 18 0.49+0.13 0.25-0.83 0.027 7.81
Stel[’cﬁ’li]dth 21 224+1.04 1-5 19  2.00 4 0.94 14 0.624 —10.71
Strid[‘;]ﬁme 24 1184013  0.94-151 21 1114010  093-1.28 0.002 * —6.36
& NG
& Cadence 24 1714018 1.32-2.13 21 1824+ 0.17 1.56-2.14 0.001 * 6.42
2 [steps/s]
75]
g Velocity 24 097+015  059-127 21  1.03+£017  0.65-1.39 0.071 6.48
§ [m/s]
stepwidth o) 19604340 530-15.99 21 9.7 4+ 3.48 1.88-16.83 0.266 —125
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T1 T2 p A%
n Mean+ SD Range n Mean £ SD Range
Stric}‘;]ﬁme 24 1.21 £0.11 1.03-1.46 21 1.16 £+ 0.11 0.94-1.35 0.073 —445
E?j;sn/cﬁ 24 1.66 + 0.15 1.37-1.95 21 1.74 +0.18 1.48-2.14 0.074 4.79
BG :
V[erif’/c;ﬁy 24 0.66 + 0.12 0.31-0.84 21 0.75+0.10 0.58-0.89 0.007 * 13.91
Stel[’cgi]dth 24 11.86+340  6.24-19.67 21 11534370 2.45-17.88 0.676 —2.79
Sfrid[‘;]ﬁme 24 1764042  117-3.11 21 1494023  1.00-1.96 0.003*  —1533
[(éj‘(f;;‘f:] 24 119 4+ 0.25 0.64-1.70 20 135+ 0.18 1.02-1.69 0.001 * 12.72
TG :
V[erilo/cgy 24 040 +0.17 0.15-0.98 20 0.44+0.13 0.19-0.80 0.024 10.28
Stel[jcmdth 2 2444106  0.72-5.67 21 2844173  081-748 0.601 16.1
Strid[eslﬁme 23 1.20 + 0.12 1.00-1.46 16 1.14 £+ 0.10 0.94-1.31 0.019 —5.26
NG [(;?e‘igf;csﬁ 23 1.67 £ 0.18 1.32-2.09 16 1.76 £ 0.16 1.52-2.08 0.019 5.39
V[if/cgy 23 1.18 + 0.51 0.03-2.11 16 1.334+0.39 0.73-2.11 0.639 12.71
o Strid[‘;]ﬁme 23 123+009 108142 15 1234013  1.05-143 0.93 0
£
& BG [(;?ed}fs“f:] 23 1.62 £ 0.11 1.40-1.84 15 1.62 +0.17 1.33-1.89 0.884 0
—
(o]
& V[i?/cgy 23 0.55+043 0.07-1.26 15 0.624044 0.07-1.40 0.084 12.73
Stri‘}ilﬁme 19 1.67 + 0.27 1.40-2.47 15 1.51 £ 0.20 1.21-1.99 0.065 -10.6
G ggys 19 1.23 +0.17 0.82-1.43 15 1.35 4+ 0.18 1.00-1.65 0.048 9.76
V[eri?/cgy 19 0204022 0.01-0.66 15 0314025 0.06-0.82 0.333 55

* Correlation is significant, p-levels vary.

Appendix A.2. Balance Performance

Significant differences between balance variables measured at the first and second

study visit were less frequent than those between gait variables. Significant differences in
time were found only for tandem stance (force plate). Significant differences in the post-hoc
test were present for the COM velocity in the tandem stance (force plate).
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Table A2. Differences in mean between the first (T1) and second study visit (T2) for the balance

variables of all three gait analysis systems. Bold font indicates a significant difference in time (T1-T2,

p < 0.05) and italic font indicates a difference in time in the post-hoc test only (p < 0.05). An asterisk

marks all significant values in general. COM = center of mass, min. = minimum, max. = maximum,

NS = narrow stance, NSEc = narrow stance with eyes closed, SD = standard deviation, SS = single leg

stance, TS = tandem stance.

T1 T2 p A%
n Mean + SD Range n Mean + SD Range
Coﬁﬁﬂ?}p“ 25 719.92+307.54  206.0-1439.0 20  688.30 +352.60  256.0-1826.0  0.121 —4.39
NS ,
COM velocity 5 15.60 + 4.02 9.0-23.0 20 16.30 & 5.30 8.0-31.0 0.744 4.49
[mm/s]
Coynii‘]pse 25 143044 +853.08  336.0-33480 19 107521+ 59477  227.0-2314.0 0277  —24.83
TS _
£ CO[I\Ifl I‘I’le/l‘;]“ty 24 52.33 4+ 17.93 28.0-107.0 20 50.15 & 29.78 22.0-135.0 0.025 —417
o
o :
g Co[ﬁi?]pse 24 981.33 + 366.76 296.0-1622.0 20 960.10 & 400.45 345.0-1730.0  0.526 —2.16
H NSEc COM velod
velocity o5 27.64 + 7.48 11.0-42.0 20 25.60 + 8.52 12.0-48.0 0.094 —7.38
[mm/s]
CO[I;{ $1]pse 20 878.05+221.37  439.0-12550 20  977.80 + 44748  394.0-23450  0.601 11.36
5 oM velod
[mr;e/g]“ty 24 53.63 £ 26.48 24.0-111.0 20 47.85 + 21.84 22.0-109.0 0.082 —-10.78
Co[lzdniil]pse 24 1521.86 +772.73  3122-3628.9 21 135879+ 72722 522435275  0.145  —10.72
g NS~ COM veloci
2 velocity oy 6.58 + 1.53 4.76-10.48 20 6.44 + 1.48 3.7-10.1 0.232 —2.13
= [mm/s]
2 :
g Co[ﬁiil]we 23 151535+ 948.28  263.6-4095.1 20 139748 +681.17  3762-26094  0.575 778
p= TS -
COMvelocity 5, 8.55 + 1.81 51-11.6 21 9324377 44-193 0.881 9.01
[mm/s]
CO[Z[\ I‘iﬁ‘]pse 23 1730.55 + 655.97  7543-3138.0 21  1542.95+829.00  528.7-3467.2  0.167  —10.84
£ NSEe — oo
2 velocity oy 8.72 +2.41 5.47-16.37 21 7.76 &+ 2.03 3.9-11.4 0.075 —11.01
= [mm/s]
2 .
g Cog\rfﬁ?]pse 20 3859.69 + 3862.79  466.0-15835.0 18  2710.43 +2320.89  434.8-10,074.4 1 -29.78
p= ss .
COMyvelocity 13.07 + 6.45 6.6-28.9 20 11.85 + 4.17 6.4-219 0557  —9.33
[mm/s]
Co[lfli?]pse 16 97.74 +119.94 0.2-415.9 11 78518 + 1224.51 0.0-35104 0753 70334
NS oM velodi
[mr‘;e/‘s’]clty 21 48.20 + 27.31 12.5-112.5 12 62.96 & 27.88 34.1-114.8 0.333 30.62
Co[1:4n$1]pse 18 967.22 4 1345.26 1.0-4402.8 7 165.23 + 147.48 15.9-393.2 0.043  —485.38
TS
o :
5 COM velocity 5, 59.57 4 37.42 18.8-168.8 10 72.73 + 46.74 15.6-178.2 0.953 22.09
:(;9 [mm/s]
§ Coﬁdnﬂil]pse 16 49.05 + 42.87 0.3-156.0 9 500.58 + 715.16 243-1989.0  0.173 920.55
“ NSEc COM velod
velocity 5y 54.67 £ 35.23 12.1-139.8 9 49.46 + 34.13 22.9-128.5 0.26 —~10.53
[mm/s]
Coﬁﬁﬂ?}p“ 16 383.69 + 495.16 159-18186 9  591.83 & 724.82 109-17432  0.31 54.25
55 COM elli
CUIpse 16 97.74 + 119.94 0.2-415.9 11 785.18 + 1224.51 0.0-3510.4 0.753 703.34

[mm’]
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Appendix A.3. Parameter Optimization
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Figure A1. Results of MSI correlation analyses for smartphone step detection parameter optimization.
(A) Correlation matrix between MSI for backward gait derived from force plate and smartphone
data. (B) Correlation matrix between MSI for tandem gait derived from force plate and smartphone
data. (C) Correlation matrix between MSI for normal gait derived using force plate and smartphone
data. (D) Correlation matrix between MSI for normal gait derived from manual labeling and the
automated step detection using smartphone data. Yellow box highlights the final parameters used
for subsequent cross-platform comparisons.
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Appendix A.4. Ellipsoid Calculation

-0.01  -0.2

Figure A2. Exemplary visualization of the principal component-based ellipsoid calculation for
balance data collected using the JTrack smartphone platform.
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