TY  - CONF
AU  - Jana, Subhadip
AU  - Jana, Subhadip
AU  - Nandi, Shibabrata
AU  - Rai, Venus
AU  - Hansen, Thomas
AU  - Schmalzl, Karin
AU  - Meven, Martin
AU  - Dutta, Rajesh
AU  - Perßon, Jörg
AU  - Brückel, Thomas
TI  - Magnetic and transport properties of Mn3Sn and Fe doped Mn3Sn Weyl semimetal
M1  - FZJ-2022-02870
PY  - 2022
AB  - A large Anomalous Hall Effect (AHE) has been found in Mn3Sn due to the non-vanishing Berry flux emerging from the Weyl points. This compound draws enormous interest due to the complicated magnetic structure and its correlation with the transport properties. We observed AHE from 420 K (TN = 420 K) down to 5 K for Mn3.17Sn. From single-crystal neutron diffraction, we conclude that the magnetic structure is commensurate with magnetic moments in the hexagonal basal plane between 420 K (TN) < T < 5 K. An additional incommensurate phase appears below 250 K. The presence of AHE in the whole temperature range is consistent with the commensurate magnetic structure. Fe doping influences the nearest-neighbor exchange energy, thereby changing the magnetic and transport properties. The Néel temperature was found to be 405 K for Mn3.02Fe0.08Sn, slightly lower than the parent compound. The commensurate magnetic structure has been observed between 210 K < T < 405 K from neutron powder diffraction. An incommensurate magnetic phase was observed below 210 K. The electro-transport study of Fe-doped sample shows vanishing AHE below 207 K. Therefore, we conclude that Fe doping significantly influences the magnetic structure in the commensurate region and that AHE completely vanishes in the incommensurate region.
T2  - DPG-Tagung der Sektion Kondensierte Materie (SKM)
CY  - 4 Sep 2022 - 9 Sep 2022, Campus der Universität Regensburg (Germany)
Y2  - 4 Sep 2022 - 9 Sep 2022
M2  - Campus der Universität Regensburg, Germany
LB  - PUB:(DE-HGF)6
UR  - https://juser.fz-juelich.de/record/908846
ER  -