000908881 001__ 908881
000908881 005__ 20230310131355.0
000908881 0247_ $$2doi$$a10.3390/app12157563
000908881 0247_ $$2Handle$$a2128/31596
000908881 0247_ $$2WOS$$aWOS:000839091400001
000908881 037__ $$aFZJ-2022-02894
000908881 082__ $$a600
000908881 1001_ $$0P:(DE-Juel1)178758$$aSubaih, Rudina$$b0$$eCorresponding author
000908881 245__ $$aQuestioning the Anisotropy of Pedestrian Dynamics: An Empirical Analysis with Artificial Neural Networks
000908881 260__ $$aBasel$$bMDPI$$c2022
000908881 3367_ $$2DRIVER$$aarticle
000908881 3367_ $$2DataCite$$aOutput Types/Journal article
000908881 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1659093604_31246
000908881 3367_ $$2BibTeX$$aARTICLE
000908881 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908881 3367_ $$00$$2EndNote$$aJournal Article
000908881 520__ $$aIdentifying the factors that control the dynamics of pedestrians is a crucial step towards modeling and building various pedestrian-oriented simulation systems. In this article, we empirically explore the influential factors that control the single-file movement of pedestrians and their impact. Our goal in this context is to apply feed-forward neural networks to predict and understand the individual speeds for different densities of pedestrians. With artificial neural networks, we can approximate the fitting function that describes pedestrians’ movement without having modeling bias. Our analysis is focused on the distances and range of interactions across neighboring pedestrians. As indicated by previous research, we find that the speed of pedestrians depends on the distance to the predecessor. Yet, in contrast to classical purely anisotropic approaches—which are based on vision fields and assume that the interaction mainly depends on the distance in front—our results demonstrate that the distance to the follower also significantly influences movement. Using the distance to the follower combined with the subject pedestrian’s headway distance to predict the speed improves the estimation by 18% compared to the prediction using the space in front alone.
000908881 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation  Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000908881 536__ $$0G:(BMBF)01DH16027$$aPilotprojekt zur Entwicklung eines palästinensisch-deutschen Forschungs- und Promotionsprogramms 'Palestinian-German Science Bridge' (01DH16027)$$c01DH16027$$x1
000908881 536__ $$0G:(GEPRIS)446168800$$aDFG project 446168800 - Multi-Agent-Modellierung der Dynamik von dichten Fußgängermengen: Vorhersagen  Verstehen (446168800)$$c446168800$$x2
000908881 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908881 7001_ $$00000-0002-6114-4687$$aMaree, Mohammed$$b1
000908881 7001_ $$0P:(DE-Juel1)159135$$aTordeux, Antoine$$b2
000908881 7001_ $$0P:(DE-Juel1)132077$$aChraibi, Mohcine$$b3
000908881 773__ $$0PERI:(DE-600)2704225-X$$a10.3390/app12157563$$gVol. 12, no. 15, p. 7563 -$$n15$$p7563 -$$tApplied Sciences$$v12$$x2076-3417$$y2022
000908881 8564_ $$uhttps://juser.fz-juelich.de/record/908881/files/applsci-12-07563.pdf$$yOpenAccess
000908881 8767_ $$8102158$$92022-09-01$$d2022-09-27$$eAPC$$jZahlung erfolgt$$zOABLE
000908881 909CO $$ooai:juser.fz-juelich.de:908881$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000908881 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178758$$aForschungszentrum Jülich$$b0$$kFZJ
000908881 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132077$$aForschungszentrum Jülich$$b3$$kFZJ
000908881 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000908881 9141_ $$y2022
000908881 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000908881 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000908881 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000908881 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000908881 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908881 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000908881 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL SCI-BASEL : 2021$$d2022-11-15
000908881 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-15
000908881 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-15
000908881 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-01-12T13:06:15Z
000908881 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-01-12T13:06:15Z
000908881 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-01-12T13:06:15Z
000908881 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-15
000908881 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-15
000908881 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-15
000908881 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-15
000908881 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-15
000908881 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000908881 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000908881 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000908881 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000908881 920__ $$lyes
000908881 9201_ $$0I:(DE-Juel1)IAS-7-20180321$$kIAS-7$$lZivile Sicherheitsforschung$$x0
000908881 9801_ $$aFullTexts
000908881 980__ $$ajournal
000908881 980__ $$aVDB
000908881 980__ $$aUNRESTRICTED
000908881 980__ $$aI:(DE-Juel1)IAS-7-20180321
000908881 980__ $$aAPC