001     908881
005     20230310131355.0
024 7 _ |a 10.3390/app12157563
|2 doi
024 7 _ |a 2128/31596
|2 Handle
024 7 _ |a WOS:000839091400001
|2 WOS
037 _ _ |a FZJ-2022-02894
082 _ _ |a 600
100 1 _ |a Subaih, Rudina
|0 P:(DE-Juel1)178758
|b 0
|e Corresponding author
245 _ _ |a Questioning the Anisotropy of Pedestrian Dynamics: An Empirical Analysis with Artificial Neural Networks
260 _ _ |a Basel
|c 2022
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1659093604_31246
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Identifying the factors that control the dynamics of pedestrians is a crucial step towards modeling and building various pedestrian-oriented simulation systems. In this article, we empirically explore the influential factors that control the single-file movement of pedestrians and their impact. Our goal in this context is to apply feed-forward neural networks to predict and understand the individual speeds for different densities of pedestrians. With artificial neural networks, we can approximate the fitting function that describes pedestrians’ movement without having modeling bias. Our analysis is focused on the distances and range of interactions across neighboring pedestrians. As indicated by previous research, we find that the speed of pedestrians depends on the distance to the predecessor. Yet, in contrast to classical purely anisotropic approaches—which are based on vision fields and assume that the interaction mainly depends on the distance in front—our results demonstrate that the distance to the follower also significantly influences movement. Using the distance to the follower combined with the subject pedestrian’s headway distance to predict the speed improves the estimation by 18% compared to the prediction using the space in front alone.
536 _ _ |a 5111 - Domain-Specific Simulation Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|x 0
|f POF IV
536 _ _ |a Pilotprojekt zur Entwicklung eines palästinensisch-deutschen Forschungs- und Promotionsprogramms 'Palestinian-German Science Bridge' (01DH16027)
|0 G:(BMBF)01DH16027
|c 01DH16027
|x 1
536 _ _ |a DFG project 446168800 - Multi-Agent-Modellierung der Dynamik von dichten Fußgängermengen: Vorhersagen Verstehen (446168800)
|0 G:(GEPRIS)446168800
|c 446168800
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Maree, Mohammed
|0 0000-0002-6114-4687
|b 1
700 1 _ |a Tordeux, Antoine
|0 P:(DE-Juel1)159135
|b 2
700 1 _ |a Chraibi, Mohcine
|0 P:(DE-Juel1)132077
|b 3
773 _ _ |a 10.3390/app12157563
|g Vol. 12, no. 15, p. 7563 -
|0 PERI:(DE-600)2704225-X
|n 15
|p 7563 -
|t Applied Sciences
|v 12
|y 2022
|x 2076-3417
856 4 _ |u https://juser.fz-juelich.de/record/908881/files/applsci-12-07563.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:908881
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178758
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)132077
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-05-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-05-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL SCI-BASEL : 2021
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-01-12T13:06:15Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-01-12T13:06:15Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-01-12T13:06:15Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-15
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-15
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-7-20180321
|k IAS-7
|l Zivile Sicherheitsforschung
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-7-20180321
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21