001     908929
005     20230815122846.0
024 7 _ |a 10.1029/2021WR031549
|2 doi
024 7 _ |a 0043-1397
|2 ISSN
024 7 _ |a 1944-7973
|2 ISSN
024 7 _ |a 2128/31640
|2 Handle
024 7 _ |a WOS:000810952400001
|2 WOS
037 _ _ |a FZJ-2022-02909
082 _ _ |a 550
100 1 _ |a Hung, Ching Pui
|0 P:(DE-Juel1)176319
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Assimilation of Groundwater Level and Soil Moisture Data in an Integrated Land Surface‐Subsurface Model for Southwestern Germany
260 _ _ |a [New York]
|c 2022
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1661155649_727
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Integrated terrestrial system models predict the coupled water, energy and biogeochemical cycles. Simulations with these models are affected by uncertainties of model parameters, initial and boundary conditions, atmospheric forcings and the biophysical processes. Data assimilation (DA) can quantify and reduce the uncertainty. This has been tested intensively for single compartment models, but far less for integrated models with multiple compartments. We constructed a virtual reality (VR) with a coupled land surface-subsurface model under the Terrestrial Systems Modeling Platform, which mimics the Neckar catchment in southern Germany. Soil moisture and groundwater level (GWL) data extracted from the simulated VR are used as measurements to be assimilated with state-only/state-hydraulic parameter estimation. Soil moisture DA improves soil moisture characterization in the vertical profile and the neighboring grid cells, with a 40 ∼ 60% reduction of root mean square error (RMSE) over the observation points. In spite of a small ensemble size of 64 members, assimilating soil moisture data improved saturated hydraulic conductivity estimation around the measurement locations. The characterization of evapotranspiration and river discharge only show limited improvements (1% at observation points and less than 0.1% in RMSE at 3 selected gauge locations respectively). GWL DA not only improves the GWL characterization (76 ∼ 88% RMSE reduction at observation locations) but also soil moisture for some cases. In addition, a clear improvement in GWL characterization is observed up to 8 km from the observations, and updating the model states of the saturated zone only instead of the complete domain gives better performance.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|x 0
|f POF IV
536 _ _ |a DFG project 243358811 - FOR 2131: Datenassimilation in terrestrischen Systemen
|0 G:(GEPRIS)243358811
|c 243358811
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Schalge, Bernd
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Baroni, Gabriele
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 3
700 1 _ |a Hendricks Franssen, Harrie-Jan
|0 P:(DE-Juel1)138662
|b 4
773 _ _ |a 10.1029/2021WR031549
|g Vol. 58, no. 6
|0 PERI:(DE-600)2029553-4
|n 6
|p e2021WR031549
|t Water resources research
|v 58
|y 2022
|x 0043-1397
856 4 _ |u https://juser.fz-juelich.de/record/908929/files/Invoice_2303680.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/908929/files/Water%20Resources%20Research%20-%202022%20-%20Hung%20-%20Assimilation%20of%20Groundwater%20Level%20and%20Soil%20Moisture%20Data%20in%20an%20Integrated%20Land-3.pdf
909 C O |o oai:juser.fz-juelich.de:908929
|p openaire
|p open_access
|p OpenAPC
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176319
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129549
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)138662
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-26
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b WATER RESOUR RES : 2021
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2022-11-29
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b WATER RESOUR RES : 2021
|d 2022-11-29
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Wiley 2019
|2 APC
|0 PC:(DE-HGF)0120
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21