000908930 001__ 908930
000908930 005__ 20250314084120.0
000908930 0247_ $$2doi$$a10.1016/j.parco.2022.102952
000908930 0247_ $$2ISSN$$a0167-8191
000908930 0247_ $$2ISSN$$a1872-7336
000908930 0247_ $$2Handle$$a2128/31621
000908930 0247_ $$2WOS$$aWOS:000857033800002
000908930 037__ $$aFZJ-2022-02910
000908930 082__ $$a620
000908930 1001_ $$0P:(DE-Juel1)165321$$aPronold, J.$$b0$$eCorresponding author
000908930 245__ $$aRouting brain traffic through the von Neumann bottleneck: Efficient cache usage in spiking neural network simulation code on general purpose computers
000908930 260__ $$aAmsterdam [u.a.]$$bNorth-Holland, Elsevier Science$$c2022
000908930 3367_ $$2DRIVER$$aarticle
000908930 3367_ $$2DataCite$$aOutput Types/Journal article
000908930 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1661150508_727
000908930 3367_ $$2BibTeX$$aARTICLE
000908930 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908930 3367_ $$00$$2EndNote$$aJournal Article
000908930 520__ $$aSimulation is a third pillar next to experiment and theory in the study of complex dynamic systems such as biological neural networks. Contemporary brain-scale networks correspond to directed random graphs of a few million nodes, each with an in-degree and out-degree of several thousands of edges, where nodes and edges correspond to the fundamental biological units, neurons and synapses, respectively. The activity in neuronal networks is also sparse. Each neuron occasionally transmits a brief signal, called spike, via its outgoing synapses to the corresponding target neurons. In distributed computing these targets are scattered across thousands of parallel processes. The spatial and temporal sparsity represents an inherent bottleneck for simulations on conventional computers: irregular memory-access patterns cause poor cache utilization. Using an established neuronal network simulation code as a reference implementation, we investigate how common techniques to recover cache performance such as software-induced prefetching and software pipelining can benefit a real-world application. The algorithmic changes reduce simulation time by up to 50%. The study exemplifies that many-core systems assigned with an intrinsically parallel computational problem can alleviate the von Neumann bottleneck of conventional computer architectures.
000908930 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000908930 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x1
000908930 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x2
000908930 536__ $$0G:(EU-Grant)754304$$aDEEP-EST - DEEP - Extreme Scale Technologies (754304)$$c754304$$fH2020-FETHPC-2016$$x3
000908930 536__ $$0G:(DE-HGF)SO-092$$aACA - Advanced Computing Architectures (SO-092)$$cSO-092$$x4
000908930 536__ $$0G:(GEPRIS)368482240$$aGRK 2416: MultiSenses-MultiScales: Novel approaches to decipher neural processing in multisensory integration (368482240)$$c368482240$$x5
000908930 536__ $$0G:(GEPRIS)491111487$$aOpen-Access-Publikationskosten Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x6
000908930 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x7
000908930 536__ $$0G:(DE-Juel1)BTN-Peta-2008-2012$$aBTN-Peta - The Next-Generation Integrated Simulation of Living Matter (BTN-Peta-2008-2012)$$cBTN-Peta-2008-2012$$fBTN-Peta-2008-2012$$x8
000908930 536__ $$0G:(DE-Juel1)jinb33_20220812$$aBrain-Scale Simulations (jinb33_20220812)$$cjinb33_20220812$$fBrain-Scale Simulations$$x9
000908930 536__ $$0G:(DE-Juel-1)ATMLPP$$aATMLPP - ATML Parallel Performance (ATMLPP)$$cATMLPP$$x10
000908930 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908930 7001_ $$0P:(DE-Juel1)151356$$aJordan, J.$$b1
000908930 7001_ $$0P:(DE-Juel1)132302$$aWylie, B. J. N.$$b2
000908930 7001_ $$0P:(DE-Juel1)187457$$aKitayama, Itaru$$b3
000908930 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, M.$$b4
000908930 7001_ $$0P:(DE-Juel1)187422$$aKunkel, Susanne$$b5$$eCorresponding author
000908930 773__ $$0PERI:(DE-600)1466340-5$$a10.1016/j.parco.2022.102952$$gVol. 113, p. 102952 -$$p102952 -$$tParallel computing$$v113$$x0167-8191$$y2022
000908930 8564_ $$uhttps://juser.fz-juelich.de/record/908930/files/pronold2022parco.pdf$$yOpenAccess
000908930 8767_ $$8OAD0000226430$$92022-07-21$$a1200183023$$d2022-07-27$$eHybrid-OA$$jZahlung erfolgt$$zFZJ-2022-02837
000908930 909CO $$ooai:juser.fz-juelich.de:908930$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000908930 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165321$$aForschungszentrum Jülich$$b0$$kFZJ
000908930 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132302$$aForschungszentrum Jülich$$b2$$kFZJ
000908930 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187457$$aForschungszentrum Jülich$$b3$$kFZJ
000908930 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich$$b4$$kFZJ
000908930 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187422$$aForschungszentrum Jülich$$b5$$kFZJ
000908930 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000908930 9141_ $$y2022
000908930 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000908930 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000908930 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908930 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000908930 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-13
000908930 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-13
000908930 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-13
000908930 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPARALLEL COMPUT : 2021$$d2022-11-13
000908930 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-13
000908930 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-13
000908930 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-13
000908930 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-13
000908930 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-13
000908930 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000908930 920__ $$lyes
000908930 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000908930 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000908930 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000908930 9801_ $$aFullTexts
000908930 980__ $$ajournal
000908930 980__ $$aVDB
000908930 980__ $$aUNRESTRICTED
000908930 980__ $$aI:(DE-Juel1)INM-6-20090406
000908930 980__ $$aI:(DE-Juel1)IAS-6-20130828
000908930 980__ $$aI:(DE-Juel1)INM-10-20170113
000908930 980__ $$aAPC
000908930 981__ $$aI:(DE-Juel1)IAS-6-20130828