| Home > Publications database > Routing brain traffic through the von Neumann bottleneck: Efficient cache usage in spiking neural network simulation code on general purpose computers > print |
| 001 | 908930 | ||
| 005 | 20250314084120.0 | ||
| 024 | 7 | _ | |a 10.1016/j.parco.2022.102952 |2 doi |
| 024 | 7 | _ | |a 0167-8191 |2 ISSN |
| 024 | 7 | _ | |a 1872-7336 |2 ISSN |
| 024 | 7 | _ | |a 2128/31621 |2 Handle |
| 024 | 7 | _ | |a WOS:000857033800002 |2 WOS |
| 037 | _ | _ | |a FZJ-2022-02910 |
| 082 | _ | _ | |a 620 |
| 100 | 1 | _ | |a Pronold, J. |0 P:(DE-Juel1)165321 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Routing brain traffic through the von Neumann bottleneck: Efficient cache usage in spiking neural network simulation code on general purpose computers |
| 260 | _ | _ | |a Amsterdam [u.a.] |c 2022 |b North-Holland, Elsevier Science |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1661150508_727 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Simulation is a third pillar next to experiment and theory in the study of complex dynamic systems such as biological neural networks. Contemporary brain-scale networks correspond to directed random graphs of a few million nodes, each with an in-degree and out-degree of several thousands of edges, where nodes and edges correspond to the fundamental biological units, neurons and synapses, respectively. The activity in neuronal networks is also sparse. Each neuron occasionally transmits a brief signal, called spike, via its outgoing synapses to the corresponding target neurons. In distributed computing these targets are scattered across thousands of parallel processes. The spatial and temporal sparsity represents an inherent bottleneck for simulations on conventional computers: irregular memory-access patterns cause poor cache utilization. Using an established neuronal network simulation code as a reference implementation, we investigate how common techniques to recover cache performance such as software-induced prefetching and software pipelining can benefit a real-world application. The algorithmic changes reduce simulation time by up to 50%. The study exemplifies that many-core systems assigned with an intrinsically parallel computational problem can alleviate the von Neumann bottleneck of conventional computer architectures. |
| 536 | _ | _ | |a 5234 - Emerging NC Architectures (POF4-523) |0 G:(DE-HGF)POF4-5234 |c POF4-523 |f POF IV |x 0 |
| 536 | _ | _ | |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907) |0 G:(EU-Grant)785907 |c 785907 |f H2020-SGA-FETFLAG-HBP-2017 |x 1 |
| 536 | _ | _ | |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) |0 G:(EU-Grant)945539 |c 945539 |f H2020-SGA-FETFLAG-HBP-2019 |x 2 |
| 536 | _ | _ | |a DEEP-EST - DEEP - Extreme Scale Technologies (754304) |0 G:(EU-Grant)754304 |c 754304 |f H2020-FETHPC-2016 |x 3 |
| 536 | _ | _ | |a ACA - Advanced Computing Architectures (SO-092) |0 G:(DE-HGF)SO-092 |c SO-092 |x 4 |
| 536 | _ | _ | |a GRK 2416: MultiSenses-MultiScales: Novel approaches to decipher neural processing in multisensory integration (368482240) |0 G:(GEPRIS)368482240 |c 368482240 |x 5 |
| 536 | _ | _ | |a Open-Access-Publikationskosten Forschungszentrum Jülich (OAPKFZJ) (491111487) |0 G:(GEPRIS)491111487 |c 491111487 |x 6 |
| 536 | _ | _ | |a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405) |0 G:(DE-Juel1)PHD-NO-GRANT-20170405 |c PHD-NO-GRANT-20170405 |x 7 |
| 536 | _ | _ | |a BTN-Peta - The Next-Generation Integrated Simulation of Living Matter (BTN-Peta-2008-2012) |0 G:(DE-Juel1)BTN-Peta-2008-2012 |c BTN-Peta-2008-2012 |f BTN-Peta-2008-2012 |x 8 |
| 536 | _ | _ | |a Brain-Scale Simulations (jinb33_20220812) |0 G:(DE-Juel1)jinb33_20220812 |c jinb33_20220812 |f Brain-Scale Simulations |x 9 |
| 536 | _ | _ | |0 G:(DE-Juel-1)ATMLPP |a ATMLPP - ATML Parallel Performance (ATMLPP) |c ATMLPP |x 10 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Jordan, J. |0 P:(DE-Juel1)151356 |b 1 |
| 700 | 1 | _ | |a Wylie, B. J. N. |0 P:(DE-Juel1)132302 |b 2 |
| 700 | 1 | _ | |a Kitayama, Itaru |0 P:(DE-Juel1)187457 |b 3 |
| 700 | 1 | _ | |a Diesmann, M. |0 P:(DE-Juel1)144174 |b 4 |
| 700 | 1 | _ | |a Kunkel, Susanne |0 P:(DE-Juel1)187422 |b 5 |e Corresponding author |
| 773 | _ | _ | |a 10.1016/j.parco.2022.102952 |g Vol. 113, p. 102952 - |0 PERI:(DE-600)1466340-5 |p 102952 - |t Parallel computing |v 113 |y 2022 |x 0167-8191 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/908930/files/pronold2022parco.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:908930 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)165321 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)132302 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)187457 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)144174 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)187422 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5234 |x 0 |
| 914 | 1 | _ | |y 2022 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-30 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-30 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-13 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2022-11-13 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-13 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PARALLEL COMPUT : 2021 |d 2022-11-13 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-13 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-13 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-13 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-13 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2022-11-13 |
| 915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-6-20090406 |k INM-6 |l Computational and Systems Neuroscience |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IAS-6-20130828 |k IAS-6 |l Theoretical Neuroscience |x 1 |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-10-20170113 |k INM-10 |l Jara-Institut Brain structure-function relationships |x 2 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)INM-6-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
| 980 | _ | _ | |a I:(DE-Juel1)INM-10-20170113 |
| 980 | _ | _ | |a APC |
| 981 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|