000908939 001__ 908939
000908939 005__ 20240313103130.0
000908939 0247_ $$2doi$$a10.3389/fninf.2022.883333
000908939 0247_ $$2Handle$$a2128/31641
000908939 0247_ $$2pmid$$a35859800
000908939 0247_ $$2WOS$$aWOS:000828368200001
000908939 037__ $$aFZJ-2022-02914
000908939 082__ $$a610
000908939 1001_ $$0P:(DE-HGF)0$$aTiddia, Gianmarco$$b0
000908939 245__ $$aFast Simulation of a Multi-Area Spiking Network Model of Macaque Cortex on an MPI-GPU Cluster
000908939 260__ $$aLausanne$$bFrontiers Research Foundation$$c2022
000908939 3367_ $$2DRIVER$$aarticle
000908939 3367_ $$2DataCite$$aOutput Types/Journal article
000908939 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1662355098_31566
000908939 3367_ $$2BibTeX$$aARTICLE
000908939 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908939 3367_ $$00$$2EndNote$$aJournal Article
000908939 520__ $$aSpiking neural network models are increasingly establishing themselves as an effective tool for simulating the dynamics of neuronal populations and for understanding the relationship between these dynamics and brain function. Furthermore, the continuous development of parallel computing technologies and the growing availability of computational resources are leading to an era of large-scale simulations capable of describing regions of the brain of ever larger dimensions at increasing detail. Recently, the possibility to use MPI-based parallel codes on GPU-equipped clusters to run such complex simulations has emerged, opening up novel paths to further speed-ups. NEST GPU is a GPU library written in CUDA-C/C++ for large-scale simulations of spiking neural networks, which was recently extended with a novel algorithm for remote spike communication through MPI on a GPU cluster. In this work we evaluate its performance on the simulation of a multi-area model of macaque vision-related cortex, made up of about 4 million neurons and 24 billion synapses and representing 32 mm2 surface area of the macaque cortex. The outcome of the simulations is compared against that obtained using the well-known CPU-based spiking neural network simulator NEST on a high- performance computing cluster. The results show not only an optimal match with the NEST statistical measures of the neural activity in terms of three informative distributions, but also remarkable achievements in terms of simulation time per second of biological activity. Indeed, NEST GPU was able to simulate a second of biological time of the full- scale macaque cortex model in its metastable state 3.1× faster than NEST using 32 compute nodes equipped with an NVIDIA V100 GPU each. Using the same configuration, the ground state of the full-scale macaque cortex model was simulated 2.4× faster than NEST.
000908939 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000908939 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x1
000908939 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x2
000908939 536__ $$0G:(GEPRIS)347572269$$aDFG project 347572269 - Heterogenität von Zytoarchitektur, Chemoarchitektur und Konnektivität in einem großskaligen Computermodell der menschlichen Großhirnrinde (347572269)$$c347572269$$x3
000908939 536__ $$0G:(DE-HGF)SO-092$$aACA - Advanced Computing Architectures (SO-092)$$cSO-092$$x4
000908939 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x5
000908939 536__ $$0G:(EU-Grant)800858$$aICEI - Interactive Computing E-Infrastructure for the Human Brain Project (800858)$$c800858$$fH2020-SGA-INFRA-FETFLAG-HBP$$x6
000908939 536__ $$0G:(GEPRIS)491111487$$aOpen-Access-Publikationskosten Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x7
000908939 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908939 7001_ $$0P:(DE-HGF)0$$aGolosio, Bruno$$b1$$eCorresponding author
000908939 7001_ $$0P:(DE-Juel1)180539$$aAlbers, Jasper$$b2$$ufzj
000908939 7001_ $$0P:(DE-Juel1)162130$$aSenk, Johanna$$b3$$ufzj
000908939 7001_ $$0P:(DE-HGF)0$$aSimula, Francesco$$b4
000908939 7001_ $$0P:(DE-Juel1)165321$$aPronold, Jari$$b5$$ufzj
000908939 7001_ $$0P:(DE-HGF)0$$aFanti, Viviana$$b6
000908939 7001_ $$0P:(DE-HGF)0$$aPastorelli, Elena$$b7
000908939 7001_ $$0P:(DE-HGF)0$$aPaolucci, Pier Stanislao$$b8
000908939 7001_ $$0P:(DE-Juel1)138512$$avan Albada, Sacha J.$$b9$$ufzj
000908939 773__ $$0PERI:(DE-600)2452979-5$$a10.3389/fninf.2022.883333$$gVol. 16, p. 883333$$p883333$$tFrontiers in neuroinformatics$$v16$$x1662-5196$$y2022
000908939 8564_ $$uhttps://juser.fz-juelich.de/record/908939/files/Invoice_2022-0572291-4.pdf
000908939 8564_ $$uhttps://juser.fz-juelich.de/record/908939/files/fninf-16-883333.pdf$$yOpenAccess
000908939 8767_ $$82022-0572291-4$$92022-06-02$$a1200181904$$d2022-06-20$$eAPC$$jZahlung erfolgt$$zUSD 2950,-
000908939 909CO $$ooai:juser.fz-juelich.de:908939$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000908939 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180539$$aForschungszentrum Jülich$$b2$$kFZJ
000908939 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162130$$aForschungszentrum Jülich$$b3$$kFZJ
000908939 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165321$$aForschungszentrum Jülich$$b5$$kFZJ
000908939 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138512$$aForschungszentrum Jülich$$b9$$kFZJ
000908939 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000908939 9141_ $$y2022
000908939 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000908939 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-05-04
000908939 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000908939 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908939 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000908939 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000908939 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000908939 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT NEUROINFORM : 2021$$d2022-11-24
000908939 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-24
000908939 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-24
000908939 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-11T13:08:14Z
000908939 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-11T13:08:14Z
000908939 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-11T13:08:14Z
000908939 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-24
000908939 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-24
000908939 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-24
000908939 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2022-11-24
000908939 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-24
000908939 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000908939 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000908939 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000908939 9801_ $$aFullTexts
000908939 980__ $$ajournal
000908939 980__ $$aVDB
000908939 980__ $$aI:(DE-Juel1)INM-6-20090406
000908939 980__ $$aI:(DE-Juel1)IAS-6-20130828
000908939 980__ $$aI:(DE-Juel1)INM-10-20170113
000908939 980__ $$aUNRESTRICTED
000908939 980__ $$aAPC
000908939 981__ $$aI:(DE-Juel1)IAS-6-20130828