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We discuss some general features of the effective range expansion, the content of its parameters with 
respect to the nature of the pertinent near-threshold states and the necessary modifications in the 
presence of coupled channels, isospin violations and unstable constituents. As illustrative examples, we 
analyse the properties of the χc1(3872) and T +

cc states supporting the claim that these exotic states have 
a predominantly molecular nature.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The experimental progress in the last two decades led to the 
discovery of many states in the charmonium and bottomonium 
mass range that are in conflict with the naive quark-model pic-
ture, for recent reviews see, for example, Refs. [1–8]. Among these 
exotic states, the first unconventional quarkonium-like one, the 
χc1(3872), also known as X(3872), discovered more than a decade 
ago by the Belle Collaboration [9] remains one of the most popu-
lar and controversial states in theoretical and experimental studies. 
Since this shallow state is located less than 100 keV below the 
D0 D̄∗0 threshold, it appears as a natural candidate for a hadronic 
molecule, which was predicted in Ref. [10], though other interpre-
tations, such as a tetraquark or a mixture of a charmonium state 
with a meson molecule are also possible (see the review articles 
above for the original publications). Here it should be clear that 
what is discussed is the leading contribution; in particular, the 
molecular component of a given state shows up as the importance 
of the long-distance parts of the wave function and at short dis-
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tances other contributions could mix in. Very recently, the LHCb 
Collaboration announced the discovery of an isoscalar double-
charm exotic state T +

cc , whose quantum numbers are favoured to 
be J P = 1+ . It is located just about 360 keV below the D0 D∗+
threshold [11,12], which makes it a very close analogue of the 
χc1(3872) in the spectrum of states containing a cc̄ pair.

To shed light on the nature of near-threshold states and dis-
criminate between molecular and compact near-threshold ones, 
Morgan proposed the concept of pole counting as a tool for the 
classification of near-threshold shallow states in the one-channel 
problem [13]. Specifically, the existence of only one pole in the 
complex (momentum) k-plane near k = 0 points towards a molec-
ular scenario. On the contrary, the appearance of a pair of poles in 
the complex k-plane in the vicinity of the threshold corresponds 
to the case where a resonance has a large admixture of a compact 
state. The pole counting in the weak binding limit contains the 
same information as the renormalisation factor Z used by Wein-
berg in Ref. [14] to study the properties of the deuteron as was 
demonstrated in Ref. [15]. Both approaches require the knowledge 
of the pertinent information about the scattering problem con-
tained at low energies in the effective range parameters of the 
scattering amplitude.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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It is a direct consequence of unitarity that the imaginary part 
of the inverse single-channel two-particle scattering amplitude f
in the non-relativistic kinematics is given by

� (
f (E)−1) = −2π

μ
� (

T (E)−1) = −k , (1)

where T denotes the T matrix, k = √
2μE , μ stands for the re-

duced mass of the scattering particles and E is the energy of 
the system relative to the threshold. On the other hand, it was 
demonstrated long ago that the real part of the inverse scattering 
amplitude is a polynomial in the variable E or equivalently in even 
powers of k [16,17] and, in the case of S wave, it can be written 
as

� (
f (E)−1) = −2π

μ
� (

T (E)−1) = k cot δ = 1

a
+ 1

2
rk2 +O(k4) ,

(2)

where the parameters a and r are called the scattering length and 
effective range, respectively. The given expression holds for regular 
potentials of a finite range.1 Note that different sign conventions 
can be used for the scattering length. The one employed here is 
common in particle physics and refers to the case, when a mildly 
attractive interaction leads to a positive scattering length. Mean-
while, a repulsive interaction, which does not yield any composite 
states, or a strongly attractive one yielding a bound state corre-
sponds to a negative scattering length. An opposite sign convention 
of the 1/a term in Eq. (2) is commonly adopted in nuclear physics 
and also employed in Refs. [16,17].

Weinberg related the parameters of the effective range expan-
sion (ERE) to Z , the probability to find the compact component of 
a given hadron inside a bound state wave function [14],

a = −2

(
1 − Z

2 − Z

)
1

γ
+O

(
1

β

)
and

r = −
(

Z

1 − Z

)
1

γ
+O

(
1

β

)
, (3)

where γ = √
2μ|Eb| (with Eb < 0 for the binding energy) is the 

binding momentum and 1/β estimates range corrections. Since β
denotes the next momentum scale that is not treated explicitly in 
the ERE, it is normally estimated as the mass of the lightest ex-
change particle [10,18]. However, it may also be the momentum 
scale due to the presence of the next closed channel – to be dis-
cussed below. Clearly, model-independent statements are possible 
only if γ � β . Then one observes that

a → − 1

γ
& r → Nr

β
for Z → 0 (predominantly molecular) ,

(4)

a → − Na

β
& r → −∞ for Z → 1 (predominantly compact) ,

(5)

where Na is expected to be a positive number of the order of 1. 
In case of a single-channel potential scattering with a finite inter-
action range and negative potential in the whole space,2 also Nr

1 In the presence of a long-range potential such as the Coulomb-type interaction, 
the ERE, as given in Eq. (2), can not be applied and requires modifications which go 
beyond the scope of this work.

2 The condition of a negative-definite potential in the whole coordinate space 
does not hold when there is a repulsive barrier in addition to the attractive part 
of the potential. In that case, there can be a bound state and at the same time a 
negative effective range.
2

should be positive and of the order of 1, as demonstrated long ago 
by Smorodinsky [19,20], see also Ref. [21] for a recent discussion. 
However, this conclusion does not hold when coupled channels are 
included, as we discuss below.

Interest in Weinberg’s analysis, for a long time applied to the 
deuteron only, was revived, when it was demonstrated in Ref. [15]
that the same kind of analysis can also be used for unstable states 
as long as the inelastic threshold is sufficiently remote. Later var-
ious attempts were made to generalise the scheme to coupled 
channels and resonances [22–39] and also to virtual states [40]. For 
a detailed recent discussion of issues in applying the Weinberg cri-
terion to the case of a positive effective range, we refer to Ref. [41]. 
Last but not least, the analysis discussed above implicitly relies 
on the assumption that the scattering amplitude does not have 
Castillejo-Dalitz-Dyson (CDD) zeros in the vicinity of the threshold, 
since such zeros would invalidate the ERE given in Eq. (2) and thus 
require a more advanced analysis of the near-threshold states – for 
the corresponding extensions of the original analysis the interested 
reader is referred to Refs. [42,43]. Note, however, that the LHCb 
data for the χc1(3872) [44] and T +

cc [11,12] states discussed in the 
manuscript do not provide evidence for the near-threshold CDD 
zeros and are completely consistent with the description within 
the ERE. Thus, until an experimental evidence of such additional 
zeros is obtained, we employ the Occam’s razor principle to as-
sume that the ERE as given in Eq. (2) is appropriate for the systems 
to be considered.

In this work we investigate a series of issues related to the ERE 
as well as its application to extract information on the structure of 
near-threshold states. Hence, we discuss/provide

• a generalisation to coupled channels, that allows to make con-
tact to the usual parameterisations of near-threshold reso-
nance states (Sec. 2);

• the role of finite range corrections (Sec. 3);
• the role of isospin violation – this is of particular interest for 

the exotic states χc1(3872) and T +
cc with their poles very close 

to the D0 D̄∗0 and D0 D∗+ thresholds, respectively (Sec. 4);
• insights on the nature of the χc1(3872) and T +

cc states from 
the Weinberg compositeness criterion (Sec. 5);

• a way to account for the finite width of the pertinent scatter-
ing states (Sec. 6).

Some, but not all, of those items have already been addressed in 
the literature, as will also become clear in the discussion below. 
However, given the renewed interest in exploiting the ERE to ac-
cess information about exotic states and to gain insights into their 
nature, we regard it both timely and important to provide a con-
cise and comprehensive overview over the properties of the ERE. 
What will be left for future research is the possible role of the pion 
exchange and, in particular, of nearby three-body thresholds as 
well as a possible coupling to D waves. Specifically, the inclusion 
of tensor interactions from the one-pion exchange may generate a 
potential barrier and, in this way, shift the poles from bound/vir-
tual states to resonances. Nevertheless, we do not expect such a 
barrier to affect the nature of the states. An example of such a 
situation is provided by the Zb(10610) and Zb(10650) which be-
come resonance states, as soon as tensor forces are included, but 
still remain molecules [45,46].

2. Role of coupled channels

In Ref. [47], a scheme was developed that allows for a com-
bined analysis of the various decay channels of the χc1(3872). The 
starting point is the coupled-channel S-wave scattering amplitude 
of two hadrons, which in the presence of a nearby pole and the 
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absence of additional zeros discussed in the Introduction can be 
written as [15,42,48]

fab(E) = − ga gb

2D(E)
, (6)

with D(E) given by

D(E) = E − E f + i

2

(
g2

1k1 + g2
2k2 +

∑
i

�i(E)

)
, (7)

where the energy dependence of the two elastic (neutral D0 D̄∗0

and charged D± D∗∓) channels3 is explicitly kept. In addition, g1

and g2 are the effective couplings of the neutral and charged chan-
nels to the χc1(3872), respectively. For real values of the energy E , 
analyticity in the physical Riemann sheet requires that

ka = √
2μa(E − δa)�(E − δa) + i

√
2μa(δa − E)�(δa − E) . (8)

In what follows, we will define the energy E relative to the lowest 
threshold, which we assign to channel 1. Accordingly, we set

δ1 = 0 and δ2 = m(2)
1 + m(2)

2 − m(1)
1 − m(1)

2 ,

where m(a)

k denotes the mass of the kth particle in the elastic 
channel a and μa is the corresponding reduced mass. The terms 
�i(E) are meant to absorb all other inelasticities. Explicit forms for 
those in the case of the χc1(3872) decays into J/ψω and J/ψρ

are given in Ref. [47]. Note that the presence of such terms does 
not lead to a violation of unitarity [49]. Then, for the production 
rates in various possible elastic (a) and inelastic (i) final states one 
has [49]

dBr(S → a + ...)

dE
= N

g2
a ka

|D(E)|2 and

dBr(S → i + ...)

dE
= N

�i(E)

|D(E)|2 , (9)

where S denotes some source, the ellipsis allows for the presence 
of additional particles in the final states, and all factors common to 
the different transitions are absorbed in the source-specific prefac-
tor N . The given expressions are valid under a reasonable assump-
tion that the inelastic channels are not essential for the production 
of the χc1(3872) [50]. To simplify the discussion, in what follows, 
we assume that the energy dependence of the terms �i(E) from 
inelastic channels is negligible and thus the sum over all of them 
can be absorbed into a single constant �inel. .

When Eq. (9) is used in fits to data with a pole located at 
slightly negative values of E , there appears a problem, as pointed 
out in Ref. [44]. Namely, there exists a very strong correlation be-
tween the coupling g2

1 and the mass parameter E f . That such 
correlations appear is quite natural, since the parameterisation in 
Eq. (6) leads to E p , the real part of the pole location in the physical 
Riemann sheet (bound state), given by

E p = E f + 1

2
(g2

1γ1 + g2
2γ2) , (10)

where γa = √
2μa(δa − E p) (a = 1, 2) are both real-valued and pos-

itive as long as E p < 0. Clearly, only E p is observable and, accord-
ingly, changes in E f can be traded for changes of g1 and/or g2 (in 
the isospin limit assuming the χc1(3872) to be an isoscalar, one 
finds g2

1 = g2
2, which was used in the analyses of Refs. [44,47]). To 

remove this correlation we, therefore, propose to replace Eq. (7) by

3 The appropriate linear combination of the relevant channels corresponding to 
the positive C parity state is implied.
3

D(E) = E − E p + i

2

(
g2

1(k1 − iγ1) + g2
2(k2 − iγ2) +

∑
i

�i(E)

)
.

(11)

This expression is equivalent to the original one, except that now 
E p is directly the real part of the pole location while its imagi-
nary part is provided by the last term in parentheses. If the pole 
is located on the unphysical Riemann sheet of the complex en-
ergy plane with respect to the lower threshold, the term (k1 − iγ1)

needs to be replaced by (k1 + iγ1). Since we search for the pole 
near the lowest threshold, the momentum of the upper channel is 
on its physical sheet. From here on, for the sake of definiteness, we 
assume the χc1(3872) to emerge from a pole on the physical sheet 
(conventionally called bound state, without implying anything on 
the nature of the state) and proceed with the discussion based on 
Eq. (11). Then γ1 refers to the binding momentum with respect to 
the lower threshold. It should be noted, however, that the analysis 
performed is insensitive to the sign of γ1, so that its generalisation 
to a virtual state is quite straightforward.

The first diagonal element of the Flatté parameterisation (Eqs. 
(6) and (11)), which corresponds to the lowest-threshold channel, 
can now be straightforwardly used to determine the ERE parame-
ters of the coupled-channel scattering amplitude. Then, for the en-
ergies in the proximity of the lower threshold, using E = k2

1/(2μ1)

and

k2 = i

√√√√2μ2

(
δ2 − k2

1

2μ1

)

= i
√

2μ2δ2 − i

2

√
μ2

2μ2
1δ2

k2
1 +O

(
k4

1

μ2
1δ

2
2

)
, (12)

one finds for the scattering length and effective range, respectively,

a = − g2
1

γ 2
1 /μ1 + g2

1γ1 + g2
2(γ2 − √

2μ2δ2) + i�inel.
,

r = − 2

μ1 g2
1

− g2
2

g2
1

√
μ2

2μ2
1δ2

. (13)

The expressions (13) agree to those originally provided in Ref. [40]
for the D K/Dsη coupled-channel problem in the context of the 
D∗

s0(2317) state and reduce to those of Ref. [21] when the above 
mentioned isospin relation, g2

1 = g2
2, is employed.

Weinberg’s criterion associates a negative effective range, whose 
modulus is large compared to the range of the forces, to a predom-
inantly compact state.

The authors of Ref. [21] take g2
1 = 0.108 ± 0.003 (with E f

fixed to −7.2 MeV) from the LHCb analysis of the χc1(3872) line 
shape [44] to obtain

−rLHCb = 5.34 fm 
 1/Mπ = 1.43 fm, (14)

with Mπ for the pion mass, and use this result to conclude that 
the exotic χc1(3872) must be predominantly a compact state. 
However, two comments are here in order. First, it is necessary 
to take into account that the second term in the expression for the 
effective range r in Eq. (13) stems from coupled-channel dynam-
ics and clearly needs to be attributed to the molecular component 
of the χc1(3872) – we come back to this point below in Sec. 4. 
Accordingly, what should be compared with the range of forces in 
the spirit of the Weinberg’s criterion is not rLHCb, but

rLHCb +
√

μ2

2μ2δ2
= − 2

μ1 g2
= −3.78 fm . (15)
1 1
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Fig. 1. Coupling (black dots with errors) to the elastic D0 D̄∗0 channel (g2
1 ) and 

change in the negative log-likelihood function relative to its minimum (blue dots) 
as function of the Flatté energy E f (Eq. (7)). Results are taken from the LHCb 
study [44] of the line shape of the χc1(3872) state. The black dashed line shows 
the approximate result from Eq. (17).

Furthermore, due to the large correlation between the coupling 
and mass parameter discussed above in Eq. (10), in the LHCb anal-
ysis of Ref. [44], the value of the mass parameter E f was fixed 
to −7.2 MeV. Thus, the uncertainty of the coupling related to 
the variation of E f was not taken into account in the value of 
g2

1 = 0.108 ± 0.003 used in Ref. [21] to obtain rLHCb quoted in 
Eq. (14). Results from the LHCb study [44] of the line shape of 
the χc1(3872) state are shown in Fig. 1 and allow two instructive 
conclusions. On the one hand, we note that the minimum of the 
log-likelihood function is not exactly located at E f = −7.2 MeV, 
but rather it is shifted to the left and found at E f � −9 MeV, for 
which g2

1 is already around 25% larger. Though this variation of the 
central value of E f hardly changes the binding energy, which re-
mains around 21 keV, it affects noticeably the effective range, so 
that instead of Eq. (15) one would rather get

rLHCb +
√

μ2

2μ2
1δ2

= − 2

μ1 g2
1

≈ −3 fm. (16)

On the other hand, as discussed in Ref. [44], and also illustrated 
here in Fig. 1, the minimum is very shallow and the negative log-
likelihood relative to its minimum value (
LL) rises very slowly, 
with lower values of E f being counterbalanced with a linear in-
crease in the coupling to the D D̄∗ channels. Actually, 
LL is not 
increased by one unit up to huge values of E f around −270 MeV. 
However, values of E f approaching the D D̄∗0 threshold are dis-
favoured, with good quality fits obtained only for negative values 
of E f .

As a consequence, much larger values of g2
1 appear to be con-

sistent with the change of the log-likelihood function by unity. In 
fact, the black symbols in Fig. 1 follow nicely the pattern predicted 
from Eq. (10),

g2
1 ≈ −

√
2

μ2δ2
E f = −0.0158

MeV
E f , (17)

(see the dashed line in Fig. 1) where we used that g2
1 = g2

2 in the 
isospin limit and that for |E f | of the order of 10 MeV or larger 
the effects of a non-vanishing pole mass |E p | < 0.1 MeV can be 
safely neglected. Therefore, based on these considerations the cou-
pling g2

1 deduced in Ref. [44] should be regarded as a lower bound 
and accordingly the absolute value of the effective range given in 
Eq. (15) as an upper bound. For instance, taking E f = −270 MeV 
one would naturally get for the effective range as small value as 
−0.1 fm, which is already consistent with 0 given the accuracy of 
4

the approach. That the analysis by LHCb with its current mass res-
olution is not sensitive to the range corrections is nicely illustrated 
in Fig. 4 of Ref. [44]. Indeed, as long as the energy resolution func-
tion is not included, the shape of the Flatté distribution is clearly 
asymmetric (see the red curve in the left panel of that figure) 
which means that this distribution allows one at least in principle4

to extract the coupling to the elastic channel g2
1. However, once 

the Flatté distribution is convolved with the energy resolution, the 
resulting shape appears to be simply indistinguishable from the 
Breit-Wigner distribution. This is shown in the right panel in Fig. 4 
of Ref. [44].

Based on this logic we can safely conclude that the χc1(3872)

line shape is completely consistent with a purely molecular nature 
of it.

Recently, LHCb reported a similar analysis of the T +
cc state [12], 

located right below the D0 D∗+ threshold, from which the scatter-
ing length was extracted to be

a = [−(7.16 ± 0.51) + i(1.85 ± 0.28)] fm. (18)

In this case, however, only an upper bound on the absolute value 
of the negative effective range was found to be

0 ≤ |r| < 11.9 (16.9) fm at 90% (95%) CL, (19)

with its value consistent with 0 for the baseline fit. With a large 
scattering length, as given above, this state is also consistent with 
a hadronic molecule, as discussed below.

3. Finite range corrections

As follows from Eq. (13), in the Weinberg analysis effective 
ranges are always negative. One way to understand this is to in-
terpret the expressions in terms of an effective field theory with 
point-like interactions where the binding momentum γ1 is re-
tained as the only dynamical scale, and all finite range corrections 
are integrated out. On the other hand, Wigner has shown long time 
ago that effective ranges should not exceed the range of forces for 
otherwise causality would be violated [52]; for a simple derivation 
of the Wigner bound we refer to Appendix A of Ref. [40], see also 
Ref. [53] for a related discussion. Therefore, in an effective theory 
with zero range interactions the effective ranges need to be neg-
ative. The easiest way to go beyond the point-like approximation 
is to retain in the construction of the function D(E) the dispersive 
corrections to the k1 and k2 terms. To that end we consider the 
hadronic loop,

Ja(ka) = 2

π

∫
f 2
a (q)q2

q2 − k2
a − i0

dq , (20)

where fa(q) is the vertex function normalised such that fa(ka) = 1. 
The real parts of the loop functions provide range corrections in 
Eq. (7), which are taken into account by replacing in that equation

i

2
(g2

1k1 + g2
2k2)

−→ 1

2
g2

1 [ J1(k1) − J1(0)] + 1

2
g2

2 [ J2(k2) − J2(0)] . (21)

The finite-range contribution to the effective range reads

4 It is shown in Ref. [51] that for a large coupling to the hadronic channel, the 
Flatté distribution in the near-threshold region shows a scaling behaviour which 
does not allow one to determine all the parameters individually, but rather their 
ratios.
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rfinite ≡ −2
∂( J1 − ik1)

∂k2
1

∣∣∣∣
k2

1=0
− 2

g2
2

g2
1

∂( J2 − ik2)

∂k2
2

∂k2
2

∂k2
1

∣∣∣∣
k2

1=0

= −2
∂( J1 − ik1)

∂k2
1

∣∣∣∣
k2

1=0
− 2

μ2 g2
2

μ1 g2
1

∂( J2 − ik2)

∂k2
2

∣∣∣∣
k2

1=0
.

In particular, in a point-like theory with pions integrated out, 
choosing f 2

a (q) = θ(� − q) with � ∼ Mπ yields

rfinite =
(

1 + μ2 g2
2

μ1 g2
1

)
4

π�
. (22)

Then, if there is only one channel (g2 = 0), rfinite � 4/(π Mπ ) =
1.8 fm. This is the typical size of the effective range in the 
deuteron case, which is controlled by the left-hand cut contribu-
tion from the one-pion exchange (OPE) potential, see also Ref. [54]
for a related discussion. The OPE in the χc1(3872) and T +

cc systems 
has a subtlety because of a three-body cut which opens a few MeV 
below the corresponding resonance pole [55,56]. On the one hand, 
it formally sets the range scale � ∼ √

2Mπ (mD∗ − mD − Mπ ) �
40 MeV and thus one might naively expect the values for rfinite

around 3 times larger than given above for � � Mπ . On the other 
hand, there are good reasons to expect that the OPE contribution 
to the effective range here is suppressed relative to the N N case. 
First, the coupling constant of the pion with the heavy mesons 
is strongly suppressed relative to that with the N N system, as 
discussed in Ref. [57]. Also, the small momenta generated from 
the cut provide an additional suppression. Therefore, the leading 
contribution to the range is expected to come from shorter-range 
contributions. Then, taking � ∼ 500 MeV and g2

1 = g2
2, the finite-

range contribution to the effective range of the χc1(3872) and T +
cc

can be estimated as

rfinite � 1 fm. (23)

4. Isospin violation

As discussed in Sec. 1 for the χc1(3872), the correction to the 
effective range from the isospin violating term is −1.57 fm (see 
Eq. (15)), while for the T +

cc it is even larger, namely, −3.78 fm. In 
this section we discuss these corrections in more detail.

Both the χc1(3872) and T +
cc are assumed to be isoscalar states. 

To implement this in the expressions for the line shapes, one can 
choose g2

1 = g2
2 and only retain the leading source of isospin vio-

lation explicitly, which is provided by the splitting in the thresh-
olds of the different charge states, called δ2 above (in case of the 
χc1(3872) there is also isospin violation that becomes visible in 
the coupling to the inelastic channels but this is not of inter-
est here). Accordingly, isospin symmetry is recovered for δ2 → 0. 
However, in this limit one gets from Eq. (13) that r → −∞, which 
clearly cannot make sense. The problem here is that the expansion 
of k2 provided in Eq. (12) is justified only if k2

1 ∼ γ 2
1 � 2μ1δ2. In 

the mentioned isospin limit, however, this inequality clearly does 
not hold. Therefore, as long as we deal with a state located near 
the elastic threshold 1 and obeying |E P | = γ 2

1 /(2μ1) � δ2, we 
propose the following method to relate the ERE parameters (the 
scattering length and effective range) extracted from a fit to ex-
perimental data employing Eq. (11) to the ones to be used in the 
Weinberg criterion:

1) subtract from a−1 and r extracted from Eq. (11) all isospin-
symmetry-violating terms related with the upper channel 2 
and supply r with all finite-range corrections;
5

2) if there is an inelastic channel with δinel 
 |E P | (here δinel
is the energy distance between the thresholds of the elas-
tic channel 1 and inelastic one), subtract from a−1 and r all 
coupled-channel effects related to this inelastic channel.

This way one removes all hadronic coupled-channel effects and 
arrives at the scattering length and effective range from channel 1 
to be used in the Weinberg criterion,

a = − 1

γ1

(
1 + γ1

μ1 g2
1

)−1

, r = − 2

μ1 g2
1

+ rfinite . (24)

We note also that the correction from channel 2 to the effective 
range is by far more important than that to the scattering length. 
The dominant contribution to the scattering length comes from 
the binding momentum γ1, while the correction from the second 
channel is parametrically suppressed as 

√|E P |/δ2 relative to the 
leading term. Therefore, as long as |E P | is much smaller than δ2, 
the correction from the upper channel to the scattering length is 
suppressed.

As an alternative to the method proposed above, one could in 
principle first switch to the isospin limit and then apply the Wein-
berg criterion. However, while this can be implemented straight-
forwardly for the effective range, quantifying the impact of this 
limit on the pole and therefore on the scattering length is possible 
only when a dynamical equation is solved for the state of interest 
as it is described, e.g., for the T +

cc in Refs. [56,58]. Indeed, the pole 
position of the state in the isospin limit with the isospin-averaged 
meson masses, which is a possible convention, may differ from 
the one extracted from experiment. This would force also the scat-
tering length to change in a nontrivial way which could only be 
inferred from solving a dynamical problem. Thus, if one needs to 
extract the nature of the state from the ERE directly, without solv-
ing a dynamical problem, the method proposed above is preferred.

5. Weinberg criterion of compositeness

In Ref. [40], a generalisation of the Weinberg criterion is intro-
duced to characterise the compositeness ( X̄ ) of bound, virtual and 
resonance states. It reads

X̄ =
√

1

1 + |2r/a| . (25)

The original Weinberg criterion could not be applied to systems 
having bound states with positive effective ranges [40] (for a de-
tailed analysis of this issue, see also Ref. [41]) since it contains 
a pole at r = −a/2, while Eq. (25) is by construction free of this 
singularity and gives reasonable estimates for the compositeness. 
Using E f = −7.2 MeV and g2

1 ≥ 0.108 for the χc1(3872), as dis-
cussed above, the D0 D̄∗0 scattering length and effective range eval-
uated from Eq. (24) read a = −28.6 fm and r � −3 fm. This yields 
X̄ � 0.9 for the compositeness of the χc1(3872) from the data of 
Ref. [44]. Therefore, contrary to the claim of Ref. [21], this state is 
predominantly molecular.

Similarly, using the ERE parameters from Eqs. (18) and (19) one 
can estimate the compositeness of the T +

cc as follows. First, we re-
move the imaginary part from the inverse scattering length, since 
the unitarity contributions are additive for this quantity. Then, we 
remove the contribution from the higher-energy D+ D∗0 channel to 
find the value a = 10.1 fm for the scattering length in the D0 D∗+
channel. Taking this value together with r � −11 fm, where the 
range corrections were already included,5 the compositeness of the 

5 While the scattering length in the LHCb analysis [12] was extracted from the 
scattering amplitude at the D0 D∗+ threshold, the effective range was evaluated 
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T +
cc can be estimated as X̄ � 0.6. Thus, the ERE parameters ex-

tracted in Ref. [12] suggest that the T +
cc is not in conflict with 

the molecular scenario either, though more accurate information 
on the effective range is needed. This conclusion was further sup-
ported by the chiral EFT-based analysis of Ref. [56], where it was 
shown that the experimental data are consistent with a molecular 
interpretation of the T +

cc with the compositeness close to unity.

6. Considering a finite width of a scattering state

It was pointed out in Refs. [60,61] that the ERE needs to be 
modified when one of the scattering particles is unstable. The rea-
son for this is that the full amplitude for the scattering of h1 off h2

with an allowed decay h1 → ab no longer has a two-body thresh-
old branch point at M2 = mh1 +mh2 , but a three-body branch point 
at M3 = ma +mb +mh2 < M2, and in addition two two-body branch 
points inside the nonphysical sheet at mh1 ± i�h1/2 + mh2 [62]. 
Accordingly, the range of convergence of the ERE is limited to 
k � √

μ� ∼ 7 and 9 MeV for the χc1(3872) and T +
cc , respec-

tively, where for the estimate we used � = �D∗ 0 = 55 keV [63]
and � = �D∗± = 83 keV [64], respectively. To overcome this prob-
lem the authors of Ref. [61] suggest to replace the momentum in 
Eq. (2) by

keff = √
2μ(E + i�/2) , (26)

which in practice implies that the expansion is performed no 
longer around the nominal (real) two-body threshold but around 
the complex two-body branch point mentioned above. Note that 
the recipe of Eq. (26) is approximate only, but in case of the D∗ the 
corrections which scale as �D∗/(2
), with 
 = M2 − M3 � 7 MeV 
for the χc1(3872) case, are tiny [65]. Alternatively, one may fit the 
ERE to the scattering amplitude only for the energies outside the 
range |M2 ± �|, that is, excluding the energy range of ±� around 
the nominal threshold where the threshold cusp, that would be 
prominent in the inverse amplitude for a stable D∗ , in actuality 
is modified by the finite D∗ width. This is automatically done in 
experimental analyses with the energy resolution worse than �.

7. Summary and conclusions

The ERE provides a useful parameterisation of the scattering 
amplitude near the threshold. The lowest energy parameters, the 
scattering length and the effective range, are known to play a 
key role in determining the nature of a given state in the con-
text of the Weinberg analysis of compositeness. However, care 
must be taken when the interpretation of the effective range is 
considered in a coupled-channel problem. It is shown in this Let-
ter that the appearance of a large and negative effective range, 
which in the one-channel case would indicate the dominance 
of a compact component in the wave function of a state, in 
a coupled-channel problem can be naturally generated by the 
coupled-channel hadron-hadron dynamics. We consider the two 
important examples of the χc1(3872) and T +

cc exotic states, treated 
as coupled-channel D0 D̄∗0/D± D̄∗∓ and D0 D∗+/D+D∗0 systems, 
respectively, and demonstrate that the effective ranges of these 
states acquire significant negative contributions driven by isospin 
violation in the masses of these two thresholds. In addition, we 
argue that the LHCb analysis [44] of the χc1(3872) line shape, 
with the current energy resolution, can only give an upper limit 
on the absolute value of the effective range (in analogy with the 

from the K -matrix and includes neither the contribution from the D+D∗0 chan-
nel nor the range corrections [59].
6

LHCb analysis of the T +
cc in Ref. [12]), while effective range val-

ues close to zero are also consistent with data. We estimate the 
finite-range corrections and the compositeness of the χc1(3872)

and T +
cc states and conclude that both states are not at all in con-

tradiction with the molecular nature. Furthermore, the molecular 
component in the χc1(3872) is most likely the dominant one. Also, 
we discuss the modifications in the ERE in the presence of unsta-
ble constituents.
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