000908965 001__ 908965
000908965 005__ 20240313103131.0
000908965 0247_ $$2Handle$$a2128/31632
000908965 037__ $$aFZJ-2022-02921
000908965 041__ $$aEnglish
000908965 1001_ $$0P:(DE-HGF)0$$aAćimović, Jugoslava$$b0
000908965 1112_ $$a31st Annual Computational Neuroscience Meeting$$cMelbourne$$d2022-07-16 - 2022-07-20$$gCNS*2022$$wAustralia
000908965 245__ $$aComputational modeling of neuron-astrocyte interactions in large neural populations using the NEST simulator
000908965 260__ $$c2022
000908965 3367_ $$033$$2EndNote$$aConference Paper
000908965 3367_ $$2BibTeX$$aINPROCEEDINGS
000908965 3367_ $$2DRIVER$$aconferenceObject
000908965 3367_ $$2ORCID$$aCONFERENCE_POSTER
000908965 3367_ $$2DataCite$$aOutput Types/Conference Poster
000908965 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1661152936_5165$$xAfter Call
000908965 520__ $$aAstrocytes,the most abundant glial type in the cortex, interact with neighboring synapses,neurons and glia through complex cellular machinery (Bazargani et al., 2016).Astrocytes form mostly nonoverlapping microdomains, and a single suchmicrodomain can be reached by several hundreds of neurons and as many as~100,000 synapses (Zisis et al., 2021). Experimental studies have demonstratedcoordinated neuronal and astrocytic activity invivo (Lines et al., 2020). Computational methods can help to integratethe data on cellular mechanisms and structural organization of the corticaltissue, and to explore how neuron-astrocyte interactions modulatepopulation-level activity.  In the past two decades, the number of publishedcomputational models that include some form of neuron-astrocyte interaction hasbeen steadily increasing (Manninen et al., 2018; Manninen, Aćimović etal., 2018). The majority of the published models was implemented in custom madecode that is often not publicly available. Implementing these models in wellestablished open source simulation tools improves reproducibility of theresults and sharing of the models (Manninen et al., 2018; Manninen, Acimovic etal., 2018). Two earlier efforts to develop open source tools for simulation ofneuronal and glial networks include Arachne (Aleksin et al., 2017), and animplementation in the Brian simulator (Stimberg et al., 2019). We developed a new solution for efficient simulationof large heterogeneous populations of neurons and astrocytes implemented as a module in theNEST simulator (https://www.nest-simulator.org/). We first extended theconcept of a synapse in NEST to include interaction between three compartments,pre- and postsynaptic neurons and the neighboring astrocytic compartment. Next,we developed new method to establish efficiently interactions within a largeheterogeneous cellular population of neurons and astrocytes. Finally, we testedthe new tool by analyzing spontaneous activity regimes in medium-size networkscomposed of several hundreds of cells.  In summary, we present a new module for NEST simulator that supports reproducible, open access and efficient development of computational models for large heterogeneous populations of neurons and astrocytes.
000908965 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000908965 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x1
000908965 7001_ $$0P:(DE-Juel1)176594$$aJiang, Han-Jia$$b1$$ufzj
000908965 7001_ $$0P:(DE-Juel1)171475$$aStapmanns, Jonas$$b2$$ufzj
000908965 7001_ $$0P:(DE-HGF)0$$aManninen, Tiina$$b3
000908965 7001_ $$0P:(DE-HGF)0$$aLehtimäki, Mikko$$b4
000908965 7001_ $$0P:(DE-HGF)0$$aLinne, Marja-Leena$$b5
000908965 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, Markus$$b6$$ufzj
000908965 7001_ $$0P:(DE-Juel1)138512$$avan Albada, Sacha J.$$b7$$eCorresponding author$$ufzj
000908965 8564_ $$uhttps://juser.fz-juelich.de/record/908965/files/Acimovic_Jiang_etal_2022_v7.pdf$$yOpenAccess
000908965 909CO $$ooai:juser.fz-juelich.de:908965$$pec_fundedresources$$pdriver$$pVDB$$popen_access$$popenaire
000908965 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176594$$aForschungszentrum Jülich$$b1$$kFZJ
000908965 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171475$$aForschungszentrum Jülich$$b2$$kFZJ
000908965 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich$$b6$$kFZJ
000908965 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138512$$aForschungszentrum Jülich$$b7$$kFZJ
000908965 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000908965 9141_ $$y2022
000908965 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908965 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000908965 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000908965 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000908965 9801_ $$aFullTexts
000908965 980__ $$aposter
000908965 980__ $$aVDB
000908965 980__ $$aUNRESTRICTED
000908965 980__ $$aI:(DE-Juel1)INM-6-20090406
000908965 980__ $$aI:(DE-Juel1)IAS-6-20130828
000908965 980__ $$aI:(DE-Juel1)INM-10-20170113
000908965 981__ $$aI:(DE-Juel1)IAS-6-20130828