001     909038
005     20240711085655.0
024 7 _ |a 10.1038/s41467-022-32190-7
|2 doi
024 7 _ |a 2128/32073
|2 Handle
024 7 _ |a 35918385
|2 pmid
024 7 _ |a WOS:000836703600023
|2 WOS
037 _ _ |a FZJ-2022-02976
082 _ _ |a 500
100 1 _ |a Deng, Zeyu
|0 0000-0003-0109-9367
|b 0
|e Corresponding author
245 _ _ |a Fundamental investigations on the sodium-ion transport properties of mixed polyanion solid-state battery electrolytes
260 _ _ |a [London]
|c 2022
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1666153317_25096
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Lithium and sodium (Na) mixed polyanion solid electrolytes for all-solid-statebatteries display some of the highest ionic conductivities reported to date.However, the effect of polyanion mixing on the ion-transport properties is stillnot fully understood. Here,we focus onNa1+xZr2SixP3−xO12 (0 ≤ x ≤ 3) NASICONelectrolyte to elucidate the role of polyanion mixing on the Na-ion transportproperties. Although NASICON is a widely investigated system, transportproperties derived from experiments or theory vary by orders of magnitude.We use more than 2000 distinct ab initio-based kinetic Monte Carlo simulationsto map the compositional space of NASICON over various time ranges,spatial resolutions and temperatures. Via electrochemical impedance spectroscopymeasurements on samples with different sodium content, we findthat the highest ionic conductivity (i.e., about 0.165 S cm–1 at 473 K) isexperimentally achieved in Na3.4Zr2Si2.4P0.6O12, in line with simulations (i.e.,about 0.170 S cm–1 at 473 K). The theoretical studies indicate that dopedNASICON compounds (especially those with a silicon content x ≥ 2.4) canimprove the Na-ion mobility compared to undoped NASICON compositions.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Mishra, Tara P.
|0 0000-0002-3000-2555
|b 1
700 1 _ |a Mahayoni, Eunike
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ma, Qianli
|0 P:(DE-Juel1)129628
|b 3
700 1 _ |a Tieu, Aaron Jue Kang
|b 4
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 5
|u fzj
700 1 _ |a Chotard, Jean-Noël
|0 0000-0002-9867-7954
|b 6
700 1 _ |a Seznec, Vincent
|0 0000-0001-5233-5943
|b 7
700 1 _ |a Cheetham, Anthony K.
|0 0000-0003-1518-4845
|b 8
700 1 _ |a Masquelier, Christian
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Gautam, Gopalakrishnan Sai
|0 0000-0002-1303-0976
|b 10
700 1 _ |a Canepa, Pieremanuele
|0 0000-0002-5168-9253
|b 11
|e Corresponding author
773 _ _ |a 10.1038/s41467-022-32190-7
|g Vol. 13, no. 1, p. 4470
|0 PERI:(DE-600)2553671-0
|n 1
|p 4470
|t Nature Communications
|v 13
|y 2022
|x 2041-1723
856 4 _ |u https://juser.fz-juelich.de/record/909038/files/s41467-022-32190-7.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:909038
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129628
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2022
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2021
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-10-13T14:44:21Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-10-13T14:44:21Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2021-10-13T14:44:21Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-11
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2021
|d 2022-11-11
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-82)080011_20140620
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21